版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
卷积神经网络在图像识别中的应用卷积神经网络在图像识别中的应用目录卷积神经网络的发展及其特点卷积神经网络模型卷积神经网络的训练卷积神经网络应用于人脸识别Hubel和Wiesel在研究猫脑皮层中用于局部敏感方向选择的神经元时,发现其独特的网络结构可以有效降低反馈神经网络的复杂性。Fukushima提出了第一个基于神经元之间的局部连接型和层次结构组织的用于转化图像的网络Neocognition.根据Fukushima的观点,LeCun提出了以LeNet为代表的卷积神经网络。卷积神经网络的发展卷积神经网络的特点卷积神经网络是一类特别设计用来处理二维数据的多层神经网络。卷积神经网络被认为是第一个真正成功的采用多层层次结构网络的具有鲁棒性的深度学习方法。用卷积神经网络做图像处理时,原始图像不需要太多的预处理就可以较好地学习到图像的不变性特征。权值共享、局部感受野和子采样是卷积神经网络不同于其它神经网络的三个主要特征。卷积神经网络模型输入图像通过滤波器和可加偏置进行卷积得到C1层;对C1层的特征图进行下采样得到S2层;对S2层的特征图进行卷积得到C3层;对C3层的特征图进行下采样得到S4层;S4层的特征图光栅化后变成的向量输入到传统的全连接神经网络进行进一步分类,得到输出;输入C1S2C3S4NN卷积和下采样(降采样)过程
∑
X∑
*∑input
卷积过程池化过程:取某个特定区域的最大值或平均值1110001110001110011001100101010101111011001
×图像卷积特征5249386161839138取平均值94卷积神经网络的训练过程第一阶段:前向传播过程第二阶段:反向传播过程从样本集中取一个样本输入到网络中;计算相应的实际输出;在这个阶段,输入的信息经过逐层变换,传输到输出层。主要是前向的特征提取。计算实际输出与期望输出的差;按极小化误差的方法反向传播,调整权值矩阵;反向传播就是误差的反向反馈和权值的更新。网络训练流程图图像输入卷积和采样过程全连接层输出层是否符合期望输出结果参数初始化前向反馈变换、计算增强、逻辑回归是前向传播否误差反馈权值更新反向传播OlivettiFaces人脸数据集介绍OlivettiFaces是纽约大学的一个比较小的人脸库包含40个人的人脸图片,每个人10张人脸样本,共400份样本程序所参考的卷积神经网络结构:LeNet-5两个“卷积+子采样层”LeNetConvPoolLayer全连接层相当于MLP(多层感知机)中的隐含层HiddenLayer输出层采用逻辑回归LogisticRegressioninput+layer0(LeNetConvPoolLayer)+layer1(LeNetConvPoolLayer)+layer2(HiddenLayer)+layer3(LogisticRegression)程序模块介绍加载图像数据函数:load_data(dataset_path)卷积+采样层:classLeNetConvPoolLayer(object)全连接层(隐藏层):classHiddenLayer(object)分类器,即CNN最后一层:classLogisticRegression(object)保存训练参数函数:save_params(param1,param2,param3,param4)learning_rate=0.05 //学习速率batch_size=40 //一次输入CNN的样本数n_epochs=100 //最大训练步数nkerns=[20,50] //第一层卷积核个数为20,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度损失补偿合同标准格式版B版
- 2024产品加工期间保密责任合同3篇
- 2024年个人保险贷款合同3篇
- 2024商业物业标准化服务合同样本
- 2024版年度市场推广合作协议3篇
- 多媒体与信息技术的教学应用计划
- 地质勘探院校校长聘任合同
- 购物中心装修施工合同范本
- 2024年医疗设备供应与安装协议6篇
- 商场装潢工程协议
- 北师大版八年级生物下册全册课件【完整版】
- 不锈钢储罐施工方案11
- 积极心理学视角下的中学心理健康教育
- 社群营销与运营PPT完整全套教学课件
- 电化学原理-(李狄-著)北航出版社-课后5-9章习题参考答案
- 福建省工伤职工停工留薪期分类目录
- 睿易app操作手册ios用户手册
- 婴幼儿托育服务与管理人物访谈
- 电梯安全风险管控清单
- 新生儿先天性心脏病筛查技术规范课件
- 食品经营备案(仅销售预包装食品)信息采集表(2022版)
评论
0/150
提交评论