版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精课堂探究1.众数、中位数、平均数与频率分布直方图的关系剖析:(1)在样本数据的频率分布直方图中,众数的估计值就是最高矩形上端中点的横坐标.(2)在频率分布直方图中,中位数左右两侧的直方图的面积相等,但是因为样本数据的频率分布直方图只是直观地表明分布的特征,因而从直方图本身得不出原始的数据内容,所以由频率分布直方图得到的中位数估计值往往与样本的实际中位数的值不一致.(3)平均数显然是频率分布直方图的“重心”.在频率分布直方图中,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.理解方差与标准差剖析:(1)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.(2)标准差、方差的取值范围是[0,+∞).标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.(3)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.题型一计算方差(标准差)【例题1】从某项综合能力测试中抽取100人的成绩,统计如下表,则这100人成绩的标准差为________.分数54321人数2010303010解析:这100人的总成绩为5×20+4×10+3×30+2×30+1×10=300,平均成绩为eq\f(300,100)=3,则该100人成绩的标准差为eq\r(\f(1,100)[(5-3)2×20+(4-3)2×10+(3-3)2×30+(2-3)2×30+(1-3)2×10])=eq\f(2\r(10),5)。答案:eq\f(2\r(10),5)反思求一组数据的方差和标准差的步骤如下:①先求平均数eq\x\to(x)。②代入公式得方差和标准差s2=eq\f(1,n)[(x1-eq\x\to(x))2+(x2-eq\x\to(x))2+…+(xn-eq\x\to(x))2],s=eq\r(\f(1,n)[(x1-\x\to(x))2+(x2-\x\to(x))2+…+(xn-\x\to(x))2])。题型二众数、中位数、平均数的应用【例题2】某工厂人员及月工资构成如下:人员经理管理人员高级技工工人学徒合计月工资(元)22000250022002000100029700人数16510123合计22000150001100020000100069000(1)指出这个问题中的众数、中位数、平均数.(2)这个问题中,平均数能客观地反映该工厂的月工资水平吗?为什么?解:(1)由表格可知,众数为2000元.把23个数据按从小到大(或从大到小)的顺序排列,排在中间的数应是第12个数,其值为2200,故中位数为2200元.平均数为(22000+15000+11000+20000+1000)÷23=69000÷23=3000(元).(2)虽然平均数为3000元/月,但由表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的工资水平.反思(1)如果样本平均数大于样本中位数,说明数据中存在较大的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中的极端数据信息,帮助我们作出决策.(2)众数、中位数、平均数三者比较,平均数更能体现每个数据的特征,它是各个数据的重心.题型三方差的应用【例题3】甲、乙两台包装机同时包装质量为200克的糖果,从中各抽出10袋,测得其实际质量分别如下(单位:克):甲:203204202196199201205197202199乙:201200208206210209200193194194(1)分别计算两个样本的平均数与方差.(2)从计算结果看,哪台包装机包装的10袋糖果的平均质量更接近于200克?哪台包装机包装的10袋糖果的质量比较稳定?解:(1)eq\x\to(x甲)=eq\f(1,10)(3+4+2-4-1+1+5-3+2-1)+200=200.8。eq\x\to(x乙)=eq\f(1,10)(1+0+8+6+10+9+0-7-6-6)+200=201.5。seq\o\al(2,甲)=7。96,seq\o\al(2,乙)=38。05。(2)∵200<eq\x\to(x甲)<eq\x\to(x乙),∴甲台包装机包装的10袋糖果的平均质量更接近于200克.∵seq\o\al(2,甲)<seq\o\al(2,乙),∴甲台包装机包装的10袋糖果的质量比较稳定.反思研究两个样本的波动情况或比较它们的稳定性、可靠性等性能好坏的这类题,先求平均数,比较一下哪一个更接近标准.若平均数相等,则再比较两个样本方差的大小来作出判断.在计算过程中,要仔细观察所给样本数据的特征,选择恰当的公式来计算平均数和方差,这样可避免计算的烦琐,降低错误率。题型四易错辨析【例题4】小明是班里的优秀学生,他的历次数学成绩是96,98,95,93分,但最近的一次考试成绩只有45分,原因是他带病参加了考试.期末评价时,怎样给小明评价?错解:这五次数学考试的平均分是eq\f(96+98+95+93+45,5)=85.4,则按平均分给小明一个“良好”.错因分析:这种评价是不合理的,尽管平均分是反映一组数据平均水平的重要特征,但任何一个数据的改变都会引起它的变化,而中位数则不受某些极端值的影响
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度损失补偿合同标准格式版B版
- 2024产品加工期间保密责任合同3篇
- 2024年个人保险贷款合同3篇
- 2024商业物业标准化服务合同样本
- 2024版年度市场推广合作协议3篇
- 多媒体与信息技术的教学应用计划
- 地质勘探院校校长聘任合同
- 购物中心装修施工合同范本
- 2024年医疗设备供应与安装协议6篇
- 商场装潢工程协议
- 广东省惠州市2024-2025学年八年级上学期期中英语试卷
- 2024年度融资合同:创业公司Pre-A轮融资协议
- 《重庆市建设工程施工现场安全资料管理规程》
- 2024保密观知识竞赛试题含答案(综合题)
- 泵管加固施工方案
- 仁爱新版英语七上Unit 5语法解析
- 小学五年级上册语文 第七单元 语文要素阅读(含解析)
- 安徽省A10联盟高三下学期最后一卷英语试题(含听力)
- 2024钢琴培训合同范本
- 全国大学英语CET四级考试试卷与参考答案(2024年)
- 沟通的艺术学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论