人教版八年级上册数学期末考试试卷带答案_第1页
人教版八年级上册数学期末考试试卷带答案_第2页
人教版八年级上册数学期末考试试卷带答案_第3页
人教版八年级上册数学期末考试试卷带答案_第4页
人教版八年级上册数学期末考试试卷带答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版八年级上册数学期末考试试卷一、选择题。(每小题只有一个正确答案)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.2,3,4 D.2,4,83.下列图形中具有稳定性的是()A.正方形 B.长方形 C.等腰三角形 D.平行四边形4.点M(3,1)关于y轴的对称点的坐标为()A.(﹣3,1) B.(3,﹣1) C.(﹣3.﹣1) D.(1,3)5.已知可以写成一个完全平方式,则可为()A.4 B.8 C.16 D.6.化简的结果为()A.﹣1 B.1 C. D.7.下列运算正确的是()A.x2+x2=2x4B.a2•a3=a5C.(﹣2a2)4=16x6D.a6÷a2=a38.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1 D.ax+ay=a(x﹣y)9.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.∠COP=∠DOPB.PC=PDC.OC=ODD.∠COP=∠OPD10.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对二、填空题11.若分式的值为0,则x的值为_____12.分解因式:mx2﹣4m=_____.13.水由氢原子和氧原子组成,其中氢原子的直径约为0.0000000001m,这个数据用科学记数法表示为____.14.若,则的值为__________.15.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD的长为_____.16.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为__________.17.如图,在第一个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2=A2D;…,按此做法进行下去,则第5个三角形中,以点A4为顶点的等腰三角形的底角的度数为_____.三、解答题18.化简:.19.如图,在△ABC中,AB=AC,∠A=36°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求与作法);(2)在(1)的条件下,求∠BDC的度数.20.先化简,再求值:,其中x是从1,2,3中选取的一个合适的数.21.如图,AC=BC,AE⊥CD于点A,BD⊥CE于点B.(1)求证:CD=CE;(2)若点A为CD的中点,求∠C的度数.22.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于,那么每套售价至少是多少元?23.将一副三角板按如图所示的方式摆放,AD是等腰直角三角板ABC斜边BC上的高,另一块三角板DMN的直角顶点与点D重合,DM、DN分别交AB、AC于点E、F.(1)请判别△DEF的形状.并证明你的结论;(2)若BC=4,求四边形AEDF的面积.24.阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.25.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案1.D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形的三边关系进行分析判断.【详解】根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,2+2<4,不能组成三角形;C中,3+2>4,能够组成三角形;D中,2+4<8,不能组成三角形.故选:C.【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形任意两边的和大于第三边.3.C【分析】根据三角形具有稳定性可得答案.【详解】解:根据“三角形具有稳定性”可知等腰三角形有稳定性.故C项符合题意.故本题正确答案为C.【点睛】本题主要考查三角形的基本性质:稳定性.4.A【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点M(3,1)关于y轴的对称点的坐标为(﹣3,1),故选:A.【点睛】此题主要考查坐标与图形,解题的关键是熟知关于y轴的对称点的坐标特点.5.C【详解】∵可以写成一个完全平方式,∴x2-8x+a=(x-4)2,又(x-4)2=x2-8x+16,∴a=16,故选C.6.B【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【详解】解:.故选B.7.B【分析】直接利用积的乘方运算以及同底数幂的乘除运算法则分别化简得出答案.【详解】A、x2+x2=2x2,故此选项错误;B、a2•a3=a5,正确;C、(﹣2a2)4=16x8,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.8.D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的定义.9.D【分析】先根据角平分线的性质得出PC=PD,∠POC=∠POD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出OC=OD即可判断.【详解】∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,∠POC=∠POD,故A,B正确;在Rt△OCP与Rt△ODP中,,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD,故C正确.不能得出∠COP=∠OPD,故D错误.故选:D.【点睛】此题主要考查角平分线的性质与证明,解题的关键是熟知角平分线的性质定理与全等三角形的判定方法.10.D【详解】试题分析:∵D为BC中点,∴CD=BD,又∵∠BDO=∠CDO=90°,∴在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;所以共有4对全等三角形,故选D.考点:全等三角形的判定.11.-2【分析】根据分子为零且分母不为零分式的值为零,可得答案.【详解】由题意,得x+2=0且x≠0,解得x=-2,故答案为:-2.【点睛】此题主要考查分式的值,解题的关键是熟知分子为零且分母不为零时分式的值为零.12.m(x+2)(x﹣2)【解析】【分析】提取公因式法和公式法相结合因式分解即可.【详解】原式故答案为【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.13.1×10-10.【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).14.9【解析】分析:先将化为,再将代入所化式子计算即可.详解:∵,∴=====9.故答案为:9.点睛:“能够把化为”是解答本题的关键.15.3【分析】求出∠BAD=∠BAC﹣∠DAC=30°,求出AB=2,求出BC=4,则CD可求出.【详解】∵AD⊥BC于点D,∠C=30°,∴∠DAC=60°,∵∠BAC=90°,∴∠BAD=∠BAC﹣∠DAC=30°,∴在Rt△ABD中,AB=2BD=2,∴Rt△ABC中,∠C=30°,∴BC=2AB=4,∴CD=BC﹣BD=4﹣1=3.故答案为:3.【点睛】此题主要考查直角三角形的性质与证明,解题的关键是熟知含30°的直角三角形的性质.16.2+2【解析】【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【详解】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故答案为2+2.【点睛】本题考查了线段垂直平分线性质、三角形内角和定理、等腰三角形的性质、含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.17.5°【分析】根据第一个△ABA1中,∠B=20°,AB=A1B,可得∠BA1A=80°,依次得∠CA2A1=40°…即可得到规律,从而求得以点A4为顶点的等腰三角形的底角的度数.【详解】∵△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°同理可得:∠DA3A2=20°,∠EA4A3=10°,∴∠An=,∴以点A4为顶点的等腰三角形的底角的度数为:∠A5==5°.故答案为5°.【点睛】此题主要考查三角形的角度规律的探究,解题的关键是熟知等腰三角形的性质.18.-4.【解析】试题分析:先用“平方差公式”和“单项式乘以多项式的法则”进行计算,再合并同类项即可.试题解析:原式==.19.(1)见解析;(2)72°【分析】(1)直接利用角平分线的作法得出BD;(2)利用等腰三角形的性质以及角平分线的性质分析得出答案.【详解】(1)如图所示:BD即为所求;(2)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠ABC=36°,∴∠BDC=∠A+∠ABD=72°.【点睛】此题主要考查角平分线的作图与角度求解,解题的关键是熟知等腰三角形的性质.20.;-2【分析】先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x值代入计算即可.【详解】解:原式,当时,原式.【点睛】此题考查分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.21.(1)见解析;(2)60°【分析】(1)证明△CAE≌△CBD(ASA),可得出结论;(2)根据题意得出△CDE为等边三角形,进而得出∠C的度数.【详解】(1)∵AE⊥CD于点A,BD⊥CE于点B,∴∠CAE=∠CBD=90°,在△CAE和△CBD中,,∴△CAE≌△CBD(ASA).∴CD=CE;(2)连接DE,∵由(1)可得CE=CD,∵点A为CD的中点,AE⊥CD,∴CE=DE,∴CE=DE=CD,∴△CDE为等边三角形.∴∠C=60°.【点睛】此题主要考查全等三角形的判定的综合问题,解题的关键是熟知全等三角形的判定方法及等边三角形的判定定理.22.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x套,第二次购进2x套,然后根据题意列分式解答即可;(2)设每套售价是y元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进套运动服,由题意得解这个方程,得经检验,是所列方程的根;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为元,由题意得,解这个不等式,得.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.23.(1)△DEF是等腰直角三角形,理由见解析;(2)2【分析】(1)可得∠CAD=∠B=45°,根据同角的余角相等求出∠CDF=∠ADE,然后利用“角边角”证明△ADE和△CDF全等,则结论得证;(2)根据全等三角形的面积相等可得S△ADE=S△CDF,从而求出S四边形AEDF=S△ABD=,可求出答案.【详解】(1)解:△DEF是等腰直角三角形.证明如下:∵AD⊥BC,∠BAD=45°,∴∠EAD=∠C,∵∠MDN是直角,∴∠ADF+∠ADE=90°,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,又∵∠MDN=90°,∴∠EDF=90°,∴△DEF是等腰直角三角形;(2)∵△ADE≌△CDF,∴S△ADE=S△CDF,∵△ABC是等腰直角三角形,AD⊥BC∴AD=BD=BC,∴S四边形AEDF=S△ABD===2.【点睛】此题主要考查等腰三角形的性质与判定,解题的关键是熟知全等三角形的判定定理、等腰三角形的性质.24.(1)(x﹣2)(x﹣4);(2)①(x﹣y+1)(x﹣y+3);②(m+1)2(m﹣1)(m+3).【分析】(1)根据材料1,可对进行x2﹣6x+8进行分解因式;(2)①根据材料2的整体思想,可对(x﹣y)2+4(x﹣y)+3进行分解因式;②根据材料1、2,可对m(m+2)(m2+2m﹣2)﹣3进行分解因式.【详解】解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A=x﹣y,则原式=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论