版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
仪征电大附属中学2025届高考冲刺数学模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角的对边分别为,若,则的形状为()A.直角三角形 B.等腰非等边三角形C.等腰或直角三角形 D.钝角三角形2.已知为虚数单位,若复数满足,则()A. B. C. D.3.设函数的定义域为,命题:,的否定是()A., B.,C., D.,4.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.5.已知函数,若,则a的取值范围为()A. B. C. D.6.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}7.已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,,,,则B.若,,,则C.若,,,则D.若,,,则8.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线9.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.10.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.11.已知数列对任意的有成立,若,则等于()A. B. C. D.12.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.14.设函数,则______.15.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.16.的展开式中的常数项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.18.(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.19.(12分)已知动圆经过点,且动圆被轴截得的弦长为,记圆心的轨迹为曲线.(1)求曲线的标准方程;(2)设点的横坐标为,,为圆与曲线的公共点,若直线的斜率,且,求的值.20.(12分)设函数.(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围.21.(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.22.(10分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:.【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.2、A【解析】分析:题设中复数满足的等式可以化为,利用复数的四则运算可以求出.详解:由题设有,故,故选A.点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.3、D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.4、D【解析】
首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.5、C【解析】
求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.6、D【解析】
解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.【点睛】本题考查集合的交集运算,属于基础题.7、B【解析】
根据空间中线线、线面位置关系,逐项判断即可得出结果.【详解】A选项,若,,,,则或与相交;故A错;B选项,若,,则,又,是两个不重合的平面,则,故B正确;C选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故C错;D选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故D错;故选B【点睛】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型.8、C【解析】
根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【详解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示实轴在y轴上的双曲线,
故选C.【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.9、A【解析】
画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.10、A【解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.11、B【解析】
观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.12、C【解析】
集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】
讨论三种情况,a<0时,根据均值不等式得到a(﹣a)≤﹣14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0时,[x﹣(a)](x﹣4)<0,其中a0,故解集为(a,4),由于a(﹣a)≤﹣14,当且仅当﹣a,即a=﹣1时取等号,∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣1;②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;③a>0时,[x﹣(a)](x﹣4)>0,其中a4,∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;综上所述,a=﹣1.故答案为:﹣1.【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.14、【解析】
由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:【点睛】本题考查分段函数求值,属于简单题.15、【解析】
由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【详解】根据题中的程序框图可得:,执行循环体,,不满足条件,执行循环体,,此时,满足条件,退出循环,输出的值为.故答案为:【点睛】本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.16、160【解析】
先求的展开式中通项,令的指数为3即可求解结论.【详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3)不能,证明见解析【解析】
(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),,曲线在点处的切线方程为,,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,,,解得,当时,对任意,,,,,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记,,则关于的方程有三个不同的实根,等价于函数有三个零点,,当时,,记,则,在单调递增,,即,,在单调递增,至多有一个零点;当时,记,则,在单调递增,即在单调递增,至多有一个零点,则至多有两个单调区间,至多有两个零点.因此,不可能有三个零点.关于的方程不可能有三个不同的实根.【点睛】本题考查了导数几何意义的应用、利用导数研究函数单调性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.18、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;(Ⅱ)易证,,两两垂直,以,,分别为,,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案.【详解】解:(Ⅰ)取的中点为,连结.由是三棱台得,平面平面,从而.∵,∴,∴四边形为平行四边形,∴.∵,为的中点,∴,∴.∵平面平面,且交线为,平面,∴平面,而平面,∴.(Ⅱ)连结.由是正三角形,且为中点,则.由(Ⅰ)知,平面,,∴,,∴,,两两垂直.以,,分别为,,轴,建立如图所示的空间直角坐标系.设,则,,,,∴,,.设平面的一个法向量为.由可得,.令,则,,∴.设与平面所成角为,则.【点睛】本题考查了空间几何中,面面垂直的性质,线线垂直的证明,及线面角的求法,考查了学生的逻辑推理能力与计算求解能力,属于中档题.19、见解析【解析】
(1)设,则点到轴的距离为,因为圆被轴截得的弦长为,所以,又,所以,化简可得,所以曲线的标准方程为.(2)设,,因为直线的斜率,所以可设直线的方程为,由及,消去可得,所以,,所以.设线段的中点为,点的纵坐标为,则,,所以直线的斜率为,所以,所以,所以.易得圆心到直线的距离,由圆经过点,可得,所以,整理可得,解得或,所以或,又,所以.20、(1)(2)【解析】
利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为若对任意、都有,即为,由,当取得等号,则,由,可得,则的取值范围是【点睛】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题.(1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式把不等式恒成立问题转化为函数最值问题.21、(1);(2)或.【解析】
(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.【详解】(1)因为,所以当时,;当时,无解;当时,;综上,不等式的解集为;(2),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人借贷协议模板指南版B版
- 2024化验室设备采购合同范本
- 2024年度佛山建筑公司工程分包合同标的物2篇
- 2024专项饭店后厨料理与清洁维护承包协议版
- 2024专业监理协议格式示例集合版B版
- 2024年学校教学仪器采购协议模板
- 2024年工程履约专项担保合同版B版
- 2024年度企业年会策划服务协议版B版
- 2024年专职驾驶员聘用协议一
- 2024年劳动合同修改范本细则版B版
- 屋面太阳能发电系统施工方案
- 咨询公司招聘合同范本
- 2025年中国细胞与基因治疗行业深度分析、投资前景、趋势预测报告(智研咨询)
- 护理学科建设规划
- 2024年度生产设备操作安全协议
- 四方建房合同模板
- 第六单元 百分数(一) 单元测试(含答案)2024-2025学年六年级上册数学人教版
- 学生心理问题的识别与干预-班主任工作培训课件
- 铁路安全专项培训试卷(一)考试
- 劳动教育导论学习通超星期末考试答案章节答案2024年
- 北京市2024年第二次普通高中学业水平合格性考试语文试卷(含答案)
评论
0/150
提交评论