版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第20课函数y=Asin(ωx+φ)的图象(分层专项精练)【一层练基础】一、单选题1.(2023·全国·高三专题练习)已知函数SKIPIF1<0,则下列结论错误的是(
)A.函数SKIPIF1<0的最小正周期是SKIPIF1<0B.函数SKIPIF1<0在区间SKIPIF1<0上单调递减C.函数SKIPIF1<0的图象可由函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度,再向下平移1个单位长度得到D.函数SKIPIF1<0的图象关于SKIPIF1<0对称【答案】C【分析】A选项,利用三角恒等变换得到SKIPIF1<0,从而求出最小正周期;B选项,整体代入检验是否是单调递减区间;C选项,利用函数平移左加右减,上加下减进行平移,求出平移后的解析式;D选项,代入检验是否是对称中心.【详解】SKIPIF1<0,所以函数SKIPIF1<0的最小正周期是SKIPIF1<0,A正确;当SKIPIF1<0时,SKIPIF1<0,所以SKIPIF1<0单调递减,故B正确;函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度,再向下平移1个单位长度得到SKIPIF1<0,故C错误;当SKIPIF1<0时,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的图象关于SKIPIF1<0中心对称,D正确.故选:C2.(2023·江西南昌·南昌市八一中学校考三模)函数SKIPIF1<0的图像向左平移SKIPIF1<0个单位得到函数SKIPIF1<0的图像,若函数SKIPIF1<0是偶函数,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根据图像平移得函数SKIPIF1<0的解析式,由函数SKIPIF1<0是偶函数,解出SKIPIF1<0,可得SKIPIF1<0.【详解】函数SKIPIF1<0的图像向左平移SKIPIF1<0个单位,得SKIPIF1<0的图像,又函数SKIPIF1<0是偶函数,则有SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;所以SKIPIF1<0.故选:C.3.(2023·全国·高一专题练习)已知函数SKIPIF1<0,将函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度,得到函数SKIPIF1<0的部分图象如图所示,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】首先根据平移后得到函数SKIPIF1<0的解析式,再根据图象求函数的解析式,即可求值.【详解】平移不改变振幅和周期,所以由图象可知SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度,得SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0,且SKIPIF1<0,得SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0.故选:A4.(2022秋·全国·高一期末)已知函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度后得到函数SKIPIF1<0的图象关于y轴对称,则SKIPIF1<0的最小值为(
)A.1 B.2 C.SKIPIF1<0 D.5【答案】D【分析】根据辅助角公式,结合正弦型函数的奇偶性进行求解即可.【详解】SKIPIF1<0,因为该函数的图象向左平移SKIPIF1<0个单位长度后得到函数SKIPIF1<0的图象,所以SKIPIF1<0,因为SKIPIF1<0的图象关于y轴对称,所以SKIPIF1<0是偶函数,因此有SKIPIF1<0,因为SKIPIF1<0,所以当SKIPIF1<0时,SKIPIF1<0有最小值,最小值为5,故选:D二、多选题5.(2023秋·广西贵港·高三平南县中学校考阶段练习)已知函数SKIPIF1<0的部分图象如图所示,则(
)A.SKIPIF1<0的最小正周期为SKIPIF1<0B.当SKIPIF1<0时,SKIPIF1<0的值域为SKIPIF1<0C.将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度可得函数SKIPIF1<0的图象D.将函数SKIPIF1<0的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点SKIPIF1<0对称【答案】ACD【分析】先根据SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的几何意义,求得SKIPIF1<0的解析式,再结合正弦函数的图象与性质,函数图象的变换,逐一分析选项即可.【详解】由图可知,SKIPIF1<0,函数SKIPIF1<0的最小正周期SKIPIF1<0,故A正确;由SKIPIF1<0,知SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,对于B,当SKIPIF1<0时,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的值域为SKIPIF1<0,故B错误;对于C,将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度,得到SKIPIF1<0的图象,故C正确;对于D,将函数SKIPIF1<0的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到SKIPIF1<0的图象,因为当SKIPIF1<0时,SKIPIF1<0,所以得到的函数图象关于点SKIPIF1<0对称,故D正确.故选:ACD.6.(2023春·浙江金华·高一浙江省东阳中学校联考阶段练习)已知函数SKIPIF1<0的图象关于直线SKIPIF1<0对称,那么(
)A.函数SKIPIF1<0为奇函数B.函数SKIPIF1<0在SKIPIF1<0上单调递增C.若SKIPIF1<0,则SKIPIF1<0的最小值为SKIPIF1<0D.函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度得到函数SKIPIF1<0的图象【答案】AC【分析】利用SKIPIF1<0的图象关于直线SKIPIF1<0对称,即可求出SKIPIF1<0的值,从而得出SKIPIF1<0的解析式,再利用三角函数的性质逐一判断四个选项即可.【详解】因为SKIPIF1<0的图象关于直线SKIPIF1<0对称,所以SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,对于A:SKIPIF1<0,所以SKIPIF1<0为奇函数成立,故选项A正确;对于B:SKIPIF1<0时,SKIPIF1<0,函数SKIPIF1<0在SKIPIF1<0上不是单调函数;故选项B不正确;对于C:因为SKIPIF1<0,SKIPIF1<0,又因为SKIPIF1<0,所以SKIPIF1<0的最小值为半个周期,即SKIPIF1<0,故选项C正确;对于D:函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度得到SKIPIF1<0,故选项D不正确;故选:AC7.(2023·全国·高一期中)已知函数SKIPIF1<0,则下列说法正确的有(
)A.SKIPIF1<0的图象关于点SKIPIF1<0中心对称B.SKIPIF1<0的图象关于直线SKIPIF1<0对称C.SKIPIF1<0在SKIPIF1<0上单调递减D.将SKIPIF1<0的图象向左平移SKIPIF1<0个单位,可以得到SKIPIF1<0的图象【答案】AC【分析】用余弦函数的图像与性质,采用整体代入的思想对选项逐一判断即可.【详解】由SKIPIF1<0可知,SKIPIF1<0解得SKIPIF1<0,所以函数的对称中心为SKIPIF1<0,SKIPIF1<0故A选项正确;令SKIPIF1<0解得SKIPIF1<0,所以函数的对称轴为SKIPIF1<0,SKIPIF1<0,故B选项错误;令SKIPIF1<0,解得SKIPIF1<0,所以函数的单调递减区间为SKIPIF1<0,故C选项正确;将SKIPIF1<0的图象向左平移SKIPIF1<0个单位得SKIPIF1<0,故D选项错误;故选:AC三、填空题8.(2023春·福建福州·高三校考阶段练习)将函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度.得到函数g(x)的图象,若g(x)是奇函数,则φ=.【答案】SKIPIF1<0【分析】首先根据平移规律求函数SKIPIF1<0的解析式,再根据函数是奇函数,求SKIPIF1<0的值.【详解】函数SKIPIF1<0向左平移SKIPIF1<0个单位长度,得到函数SKIPIF1<0,函数SKIPIF1<0是奇函数,所以SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0.故答案为:SKIPIF1<09.(2023·全国·高三专题练习)已知SKIPIF1<0,现将SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度,再向下平移两个单位长度,得到SKIPIF1<0的图象,则满足SKIPIF1<0的SKIPIF1<0的取值集合为.【答案】SKIPIF1<0【分析】先利用三角函数图象变换规律求出SKIPIF1<0的解析式,再由SKIPIF1<0求解即可.【详解】解:由题意可知,SKIPIF1<0.令SKIPIF1<0,则SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,故取值集合为SKIPIF1<0.故答案为:SKIPIF1<0四、解答题10.(2023秋·天津蓟州·高三校考阶段练习)已知函数SKIPIF1<0的部分图象如图所示.(1)求SKIPIF1<0的最小正周期及解析式;(2)将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度得到函数SKIPIF1<0的图象,求函数SKIPIF1<0在区间SKIPIF1<0上的最大值和最小值.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0.【分析】(1)由图象可知SKIPIF1<0,相邻的对称中心和对称轴距离相差SKIPIF1<0,再代入关键点可得解析式;(2)根据图象的变换得到SKIPIF1<0解析式,再根据正弦函数的图象与性质可得其在区间上SKIPIF1<0最值.【详解】(1)由图象可知SKIPIF1<0的最大值为1,最小值-1,故SKIPIF1<0;又SKIPIF1<0∴SKIPIF1<0,将点SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0故答案为:SKIPIF1<0,SKIPIF1<0.(2)由SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度得到函数SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴当SKIPIF1<0时,即SKIPIF1<0,SKIPIF1<0;当SKIPIF1<0时,即SKIPIF1<0,SKIPIF1<0故答案为:SKIPIF1<0【二层练综合】一、单选题1.(2023·全国·统考高考真题)函数SKIPIF1<0的图象由函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度得到,则SKIPIF1<0的图象与直线SKIPIF1<0的交点个数为(
)A.1 B.2 C.3 D.4【答案】C【分析】先利用三角函数平移的性质求得SKIPIF1<0,再作出SKIPIF1<0与SKIPIF1<0的部分大致图像,考虑特殊点处SKIPIF1<0与SKIPIF1<0的大小关系,从而精确图像,由此得解.【详解】因为SKIPIF1<0向左平移SKIPIF1<0个单位所得函数为SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0显然过SKIPIF1<0与SKIPIF1<0两点,作出SKIPIF1<0与SKIPIF1<0的部分大致图像如下,
考虑SKIPIF1<0,即SKIPIF1<0处SKIPIF1<0与SKIPIF1<0的大小关系,当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0;所以由图可知,SKIPIF1<0与SKIPIF1<0的交点个数为SKIPIF1<0.故选:C.二、多选题2.(2023春·河南南阳·高一河南省桐柏县第一高级中学校考阶段练习)函数SKIPIF1<0(其中A,SKIPIF1<0,SKIPIF1<0是常数,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)的部分图象如图所示,则下列说法正确的是(
)A.SKIPIF1<0的值域为SKIPIF1<0B.SKIPIF1<0的最小正周期为πC.SKIPIF1<0D.将函数f(x)的图象向左平移SKIPIF1<0个单位,得到函数SKIPIF1<0的图象【答案】AB【分析】对A、B、C:根据函数图象求SKIPIF1<0,即可分析判断;对D:根据图象变换结合诱导公式求解析式,即可得结果.【详解】对A:由图可知:SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,则SKIPIF1<0,故SKIPIF1<0的值域为SKIPIF1<0,A正确;对B:由图可得:SKIPIF1<0,则SKIPIF1<0,B正确;对C:∵SKIPIF1<0,且SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,由图可得:SKIPIF1<0的图象过点SKIPIF1<0,即SKIPIF1<0,则SKIPIF1<0,且SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,则SKIPIF1<0,C错误;对D:可得:SKIPIF1<0,将函数f(x)的图象向左平移SKIPIF1<0个单位,得到SKIPIF1<0,D错误;故选:AB.三、填空题3.(2023春·江西宜春·高三江西省宜丰中学校考阶段练习)已知函数SKIPIF1<0的部分图象如图所示,将SKIPIF1<0的图象向左平移SKIPIF1<0个单位得到SKIPIF1<0的图象,若不等式SKIPIF1<0在SKIPIF1<0,上恒成立,则SKIPIF1<0的取值范围是.【答案】SKIPIF1<0【分析】先根据图象的变换规律求出SKIPIF1<0的解析式,进而求出SKIPIF1<0在SKIPIF1<0上的值域SKIPIF1<0,再利用换元法,结合函数性质,求出最值解决问题.【详解】解:依题意有SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由图知,函数SKIPIF1<0的最小正周期SKIPIF1<0满足:SKIPIF1<0,所以SKIPIF1<0,则SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,原不等式即化为SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上恒成立,令SKIPIF1<0,该二次函数开口向上,要使上式恒成立,只需:SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的范围是SKIPIF1<0.故答案为:SKIPIF1<0.四、解答题4.(2023春·四川眉山·高一统考期中)已知数SKIPIF1<0的相邻两对称轴间的距离为SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度,再把各点的横坐标缩小为原来的SKIPIF1<0(纵坐标不变),得到函数SKIPIF1<0的图象,当SKIPIF1<0时,求函数SKIPIF1<0的值域;(3)对于第(2)问中的函数SKIPIF1<0,记方程SKIPIF1<0在SKIPIF1<0上的根从小到大依次为SKIPIF1<0,若SKIPIF1<0SKIPIF1<0,试求SKIPIF1<0与SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)先整理化简得SKIPIF1<0,利用周期求得SKIPIF1<0,即可得到SKIPIF1<0;(2)利用图像变换得到SKIPIF1<0,用换元法求出函数SKIPIF1<0的值域;(3)由方程SKIPIF1<0,得到SKIPIF1<0,借助于正弦函数SKIPIF1<0的图象,求出SKIPIF1<0与SKIPIF1<0的值.【详解】(1)由题意,函数SKIPIF1<0SKIPIF1<0因为函数SKIPIF1<0图象的相邻两对称轴间的距离为SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0.故SKIPIF1<0(2)将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度,可得SKIPIF1<0的图象.再把横坐标缩小为原来的SKIPIF1<0,得到函数SKIPIF1<0的图象.当SKIPIF1<0时,SKIPIF1<0,当SKIPIF1<0时,函数SKIPIF1<0取得最小值,最小值为SKIPIF1<0,当SKIPIF1<0时,函数SKIPIF1<0取得最大值,最大值为SKIPIF1<0,故函数SKIPIF1<0的值域SKIPIF1<0.(3)由方程SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,因为SKIPIF1<0,可得SKIPIF1<0,设SKIPIF1<0,其中SKIPIF1<0,即SKIPIF1<0,结合正弦函数SKIPIF1<0的图象,
可得方程SKIPIF1<0在区间SKIPIF1<0有5个解,即SKIPIF1<0,
其中SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0所以SKIPIF1<0SKIPIF1<0.综上,SKIPIF1<0【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于SKIPIF1<0或SKIPIF1<0的性质解题;(2)求y=Asin(ωx+φ)+B的值域通常用换元法;【三层练能力】一、多选题1.(2023春·河南焦作·高二博爱县第一中学校考期末)已知函数SKIPIF1<0(SKIPIF1<0为正整数,SKIPIF1<0)的最小正周期SKIPIF1<0,将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度后所得图象关于原点对称,则下列关于函数SKIPIF1<0的说法正确的是(
)A.SKIPIF1<0是函数SKIPIF1<0的一个零点 B.函数SKIPIF1<0的图象关于直线SKIPIF1<0对称C.方程SKIPIF1<0在SKIPIF1<0上有三个解 D.函数SKIPIF1<0在SKIPIF1<0上单调递减【答案】ABD【分析】先由周期范围及SKIPIF1<0为正整数求得SKIPIF1<0,再由SKIPIF1<0平移后关于原点对称求得SKIPIF1<0,从而得到SKIPIF1<0,对于AB,将SKIPIF1<0与SKIPIF1<0代入检验即可;对于C,利用换元法得到SKIPIF1<0在SKIPIF1<0内只有两个解,从而可以判断;对于D,利用整体法及SKIPIF1<0的单调性即可判断.【详解】因为SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0为正整数,所以SKIPIF1<0,所以SKIPIF1<0,所以函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度后所得图象对应的函数SKIPIF1<0,(点拨:函数SKIPIF1<0的图象经过平移变换得到SKIPIF1<0的图象时,不是平移SKIPIF1<0个单位长度,而是平移SKIPIF1<0个单位长度),由题意知,函数SKIPIF1<0的图象关于原点对称,故SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,对于A,SKIPIF1<0,故A正确;对于B,SKIPIF1<0,故B正确;对于A,令SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,显然SKIPIF1<0在SKIPIF1<0内只有SKIPIF1<0,SKIPIF1<0两个解,即方程SKIPIF1<0在SKIPIF1<0上只有两个解,故C错误;对于A,当SKIPIF1<0时,SKIPIF1<0,因为SKIPIF1<0在SKIPIF1<0上单调递减,所以函数SKIPIF1<0在SKIPIF1<0上单调递减,故D正确.故选:ABD.【点睛】关键点点睛:求解此类问题的关键是会根据三角函数的图象变换法则求出变换后所得图象对应的函数解析式,注意口诀“左加右减,上加下减,横变SKIPIF1<0,纵变A”在解题中的应用.二、填空题2.(2022·四川广安·广安二中校考模拟预测)已知曲线SKIPIF1<0相邻对称轴之间的距离为SKIPIF1<0,且函数SKIPIF1<0在SKIPIF1<0处取得最大值,则下列结论正确的序号是.①当SKIPIF1<0时,SKIPIF1<0的取值范围是SKIPIF1<0;②将SKIPIF1<0的图象向左平移SKIPIF1<0个单位后所对应的函数为偶函数;③函数SKIPIF1<0的最小正周期为SKIPIF1<0;④函数SKIPIF1<0在区间SKIPIF1<0上有且仅有一个零点.【答案】①③【分析】根据题意确定函数周期,求得SKIPIF1<0,先讨论SKIPIF1<0时情况,对于①,由函数SKIPIF1<0在SKIPIF1<0处取得最大值,可得SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业植筋施工分包协议模板一
- 2024专业清包工合同范本5000字全解析
- 2024公司企业债务重组协议书
- 2024年度个人生活消费信用借款合同书版B版
- 2024年广东省土地评估师资格认证协议版B版
- 2024年度办公设备交易协议模板版B版
- 2024全新深圳商铺租赁合同
- 2024年个人设计协议模板专业定制版B版
- 2024年协议延续补充条款明细协议
- 2024年地方事业单位正式编制招聘协议样本版B版
- 富血小板血浆临床应用
- 电信网大试题专业题目应知应会题库
- 刘力红思考中医
- 机电保安制度
- 北京市房屋修缮工程计价依据古建筑分册
- 产品报价单(5篇)
- 高中英语-John Snow Defeats“King Cholera”教学课件设计
- 门式移动脚手架施工方案1234
- 新建厂房ALC板施工方案
- 围手术期护理论文范文10篇
- 建筑设计过程技术质量管理控制程序
评论
0/150
提交评论