版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页人教版数学八年级下册第十九章考试试题评卷人得分一、单选题1.一次函数y=2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.一次函数的图像与y轴交点的坐标是()A.(0,-4) B.(0,4) C.(2,0) D.(-2,0)3.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限 B.与x轴交于(1,0)C.与y轴交于(0,1) D.y随x的增大而减小4.若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k<3 B.k<0 C.k>3 D.0<k<35.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有()A.0个 B.1个 C.2个 D.3个6.大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的指距d和身高h成某种关系.下表是测得的指距与身高的一组数据:指距d/cm20212223身高h/cm160169178187已知姚明的身高是226cm,可预测他的指距约为()A.25.3cm B.26.3cm C.27.3cm D.28.3cm7.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<48.若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A.(-2,0) B.(2,0) C.(-6,0) D.(6,0)9.(2011•潍坊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A、小莹的速度随时间的增大而增大 B、小梅的平均速度比小莹的平均速度大C、在起跑后180秒时,两人相遇 D、在起跑后50秒时,小梅在小莹的前面10.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是-2≤y≤4,则k的值为()A.3 B.-3 C.3或-3 D.不确定评卷人得分二、填空题11.若一次函数y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,则m的取值范围是__________12.若直线y=kx+b中,k<0,b>0,则直线不经过第_____象限.13.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.14.如图,直线y=kx+b过A(-1,2)、B(-2,0)两点,则0≤kx+b≤-2x的解集为______.15.(2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为__________km.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点Bn的坐标为_____.(n为正整数)评卷人得分三、解答题17.如图,已知直线l经过点A(-1,0)和点B(1,4).(1)求直线l的解析式;(2)若点P是x轴上的点,且△APB的面积为8,求点P的坐标.18.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?19.已知:如图,在平面直角坐标系xOy中,A(0,8),B(0,4),点C在x轴的正半轴上,点D为OC的中点.(1)当BD与AC的距离等于2时,求线段OC的长;(2)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线BD的解析式.20.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?21.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家.两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图9所示.(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.22.如图1,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(-3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)如图2,点P从点A出发,以每秒2个单位的速度沿折线A-B-C运动,到达点C终止.设点P的运动时间为t秒,△PMB的面积为S.①求S与t的函数关系式;②求S的最大值.图1图2参考答案1.D【解析】【分析】先根据一次函数y=2x+1中k=2,b=1判断出函数图象经过的象限,进而可得出结论.【详解】∵k=2>0,b=1>0,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D.考点:一次函数的图象.2.B【解析】【分析】根据点在直线上点的坐标满足方程的关系,在解析式中令x=0,即可求得与y轴的交点的纵坐标,由此即可得答案.【详解】令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.3.C【解析】【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误,故选C.【点睛】本题主要考查了一次函数图象与几何变换,正确把握变换规律以及一次函数的图象和性质是解题的关键.4.D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,∴k−3<0−k<0解得:0<k<3,故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.5.B【解析】【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,
∴k<0正确;
②∵y2=x+a,与y轴的交点在负半轴上,
∴a<0,故②错误;
③当x<3时,y1>y2错误;
故正确的判断是①.
故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b(k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.C【解析】【分析】先根据题意求出一次函数的解析式,再把y=226代入即可求出答案.【详解】设这个一次函数的解析式是:y=kx+b,160=20k+b169=21k+b解得:k=9b=−20一次函数的解析式是:y=9x-20,当y=226时,9x-20=226,x=27.3.故选:C.【点睛】本题主要考查了一次函数的应用,在解题时要能根据题意求出一次函数的解析式是本题的关键.7.A【解析】【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,∴不等式kx+b>4的解集是x>-2,故选A.【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.8.B【解析】【分析】根据l1与l2关于x轴对称,可知l2必经过(0,-4),l1必经过点(3,-2),然后根据待定系数法分别求出l1、l2的解析式后,再联立解方程组即可得.【详解】由题意可知l1经过点(3,-2),(0,4),设l1的解析式为y=kx+b,则有,解得,所以l1的解析式为y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l1的解析式为y=mx+n,则有,解得,所以l2的解析式为y=2x-4,联立,解得:,所以交点坐标为(2,0),故选B.【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.9.D【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.10.C【解析】【分析】由题意可知,分以下两种情况进行解答即可:(1)在y=kx+b中,当x=0时,y=-2;当x=2时,y=4;(2)当x=0时,y=4;当x=2时,y=-2.【详解】根据题意分以下两种情况解答即可:(1)∵在y=kx+b中,当x=0时,y=-2;当x=2时,y=4,∴,解得:;(2)∵在当x=0时,y=4;当x=2时,y=-2,∴,解得.综上所述,k的值为3或-3.故选C.【点睛】知道“本题存在以下两种情况:(1)在y=kx+b中,当x=0时,y=-2;当x=2时,y=4;(2)在y=kx+b中,当x=0时,y=4;当x=2时,y=-2.”是解答本题的关键.11.m<【解析】【详解】∵y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,∴(2m﹣1)<0,3﹣2m>0∴解不等式得:m<,m<,∴m的取值范围是m<.故答案为m<.12.一、二、四【解析】∵k<0,b>0,∴直线y=kx+b经过第一、二、四象限,故答案为一、二、四.13.一【解析】试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限考点:一次函数的性质14.-2≤x≤-1【解析】试题分析:直线OA的解析式为y=﹣2x,当﹣2≤x≤﹣1时,0≤kx+b≤﹣2x.故答案为﹣2≤x≤﹣1.考点:一次函数与一元一次不等式.15.0.3【解析】试题分析:方法一:由题意可得,小明从图书馆回家用的时间是:55﹣(10+30)=15分钟,则小明回家的速度为:0.9÷15=0.06km/min,故他离家50分钟时离家的距离为:0.9﹣0.06×[50﹣(10+30)]=0.3km,故答案为0.3;方法二:设小明从图书馆回家对应的函数解析式为y=kx+b,则该函数过点(40,0.9),(55,0),∴,解得:,即小明从图书馆回家对应的函数解析式为y=﹣0.06x+3.3,当x=50时,y=﹣0.06×50+3.3=0.3,故答案为0.3.考点:一次函数的应用.16.(2n﹣1,2n﹣1)【解析】【分析】根据直线解析式先求出OA1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第n个正方形的边长,从而求得点Bn的坐标.【详解】∵直线y=x+1,当x=0时,y=1,当y=0时,x=-1,∴OA1=1,∴B1(1,1),∵OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=2=21,∴B2(3,2),同理得:A3C2=4=22,…,∴B3(23-1,23-1),∴Bn(2n−1,2n−1),故答案为Bn(2n−1,2n−1).【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.17.(1)y=2x+2;(2)P(-5,0)或(3,0).【解析】【分析】(1)首先设出设直线l1的解析式为y=kx+bk≠0,根据待定系数法把点A(﹣1,0)和点B(1,4)代入设的解析式,即可求出一次函数的解析式;
(2)根据三角形的面积计算出AP的长,进而得到P【详解】(1)设直线l1的表达式为y=kx+b(k≠0),∵一次函数的图象经过点A(﹣1,0)和点B(1,4).∴-k+b=0k+b=4,解得k=2∴直线l1的表达式为y=2x+2;(2)∵△APB的面积为8,点B(1,4),∴12×AP×4=8解得:AP=4,∵点A(﹣1,0),∴P(﹣5,0)或(3,0).【点睛】此题主要考查了待定系数法求一次函数解析式,关键是掌握直线上任意一点的坐标都满足函数关系式y=kx+b.18.(1)(2)该用户二、三月份的用水量各是12m3、28m3【解析】试题分析:(1)根据函数图象可以分别设出各段的函数解析式,然后根据函数图象中的数据求出相应的函数解析式;(2)根据题意对x进行取值进行讨论,从而可以求得该用户二、三月份的用水量各是多少m3.试题解析:(1)当时,设,则,所以,当时,设,则,解得,所以与的关系式是.(2)设二月份的用水量是,则三月份的用水.因为二月份用水量不超过,所以,即三月份的用水量不小于.①当时,由题意得,解得.②当时,两个月用水量均不少于,所以,整理得,故此方程无解.综上所述,该用户二、三月份用水量分别是和.考点:一次函数的应用19.(1);(2)y=-x+4.【解析】【分析】(1)作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;(2)根据平行四边形的性质可得出DE⊥OC,利用等腰三角形的三线合一可得出△OEC为等腰三角形,结合OE⊥AC可得出△OEC为等腰直角三角形,根据等腰直角三角形的性质可得出点C、D的坐标,由点B、D的坐标,利用待定系数法即可求出直线BD的解析式.【详解】(1)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,6),∵BD∥AC,BD与AC的距离等于2,∴BF=2,∵在Rt△ABF中,∠AFB=90°,AB=4,点G为AB的中点,∴FG=BG=AB=2,∴△BFG是等边三角形,∠ABF=60°,∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=8,∴x=,∵点C在x轴的正半轴上,∴点C的坐标为(,0);(2)如图:∵四边形ABDE为平行四边形,∴DE∥AB,∴DE⊥OC,∵点D为OC的中点,∴△OEC为等腰三角形,∵OE⊥AC,∴△OEC为等腰直角三角形,∴∠C=45°,∴点C的坐标为(8,0),点D的坐标为(4,0),设直线BD的解析式为y=kx+b(k≠0),将B(0,4)、D(4,0)代入y=kx+b,得:,解得:,∴直线BD的解析式为y=-x+4.【点睛】本题考查了三角形的中位线、待定系数法求一次函数解析式、等腰直角三角形、平行四边形的性质以及勾股定理,解题的关键是:(1)牢记30°角所对的直角边为斜边的一半;(2)根据平行四边形的性质结合等腰直角三角形的性质求出点C、D的坐标.20.(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要850元.【解析】【分析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.【详解】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据题意得:,解得:,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大∴当m=6时,W最小=850,答:产品件数增加后,每次运费最少需要850元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.21.(1)4000100(2)0≤x≤【解析】【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【详解】(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折线O-A-B为小玲路程与时间图象,则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=100m/s,故答案为:4000,100;(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时他离家的路程y=4000﹣300x,自变量x的范围为0≤x≤403(3)由图象可知,两人相遇是在小玲改变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度教育培训机构合作与股权转让合同
- 高等数学(工科类)课件 第五章 微分方程
- 2024年度项目管理与运营合同2篇
- 2024年度广告代理合同标的及执行细节2篇
- 2024年度委托代销合同的代销产品描述和代销利润分配2篇
- 地热供暖项目评估施工合同
- 电路改造私人施工合同样式
- 建筑材料公司访客管理
- 保健品业务代表招聘合同样本
- 茶馆植物装饰租赁合同
- 安徽大学《论文写作》2023-2024学年第一学期期末试卷
- 广东省佛山市顺德区普通高中2024-2025学年高三上学期教学质量检测(一)英语试题(解析版)
- 教师资格考试初中生物面试试题与参考答案
- 露天矿山安全培训课件经典
- 企业资产管理培训
- 公文写作课件教学课件
- 2024年巴西医疗健康产业发展趋势
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年6月浙江省高考地理试卷真题(含答案逐题解析)
- 中考语文专项必刷题之名著阅读专题(天津版)
- 2024版合伙经营运输车辆合同范本
评论
0/150
提交评论