版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈三中2025届高三考前热身数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数,,其中是虚数单位,则的最大值为()A. B. C. D.2.已知集合,集合,则等于()A. B.C. D.3.已知函数,若,则的值等于()A. B. C. D.4.设是虚数单位,复数()A. B. C. D.5.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为A. B. C. D.6.已知实数满足不等式组,则的最小值为()A. B. C. D.7.已知是虚数单位,若,则()A. B.2 C. D.38.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A. B. C. D.9.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户10.已知全集,集合,则=()A. B.C. D.11.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.12.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在点处的切线经过原点,函数的最小值为,则________.14.已知随机变量,且,则______15.已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则__________,双曲线的离心率为__________.16.设变量,,满足约束条件,则目标函数的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.(1)求椭圆的标准方程;(2)求四边形面积的取值范围.18.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)求证:在上存在唯一的极大值;(Ⅲ)直接写出函数在上的零点个数.19.(12分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.20.(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?21.(12分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.22.(10分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.2、B【解析】
求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.3、B【解析】
由函数的奇偶性可得,【详解】∵其中为奇函数,也为奇函数∴也为奇函数∴故选:B【点睛】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数4、D【解析】
利用复数的除法运算,化简复数,即可求解,得到答案.【详解】由题意,复数,故选D.【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.5、D【解析】
如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,,,.在和中,由余弦定理得,整理解得.故选D.6、B【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.7、A【解析】
直接将两边同时乘以求出复数,再求其模即可.【详解】解:将两边同时乘以,得故选:A【点睛】考查复数的运算及其模的求法,是基础题.8、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.9、D【解析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.10、D【解析】
先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.11、A【解析】
根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.12、D【解析】
由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】
求出,求出切线点斜式方程,原点坐标代入,求出的值,求,求出单调区间,进而求出极小值最小值,即可求解.【详解】,,,切线的方程:,又过原点,所以,,,.当时,;当时,.故函数的最小值,所以.故答案为:0.【点睛】本题考查导数的应用,涉及到导数的几何意义、极值最值,属于中档题..14、0.1【解析】
根据原则,可得,简单计算,可得结果.【详解】由题可知:随机变量,则期望为所以故答案为:【点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.15、【解析】
设,,根据中点坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.【详解】左焦点为,双曲线的半焦距.设,,,,,,即,,即,又直线斜率为,即,,,,在双曲线上,,即,结合可解得:,,离心率.故答案为:;.【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.16、7【解析】作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值∴z最小值=F(2,1)=7三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据坐标和为等边三角形可得,进而得到椭圆方程;(2)①当直线斜率不存在时,易求坐标,从而得到所求面积;②当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.【详解】(1),,为等边三角形,,椭圆的标准方程为.(2)设四边形的面积为.①当直线的斜率不存在时,可得,,.②当直线的斜率存在时,设直线的方程为,设,,联立得:,,,.,,,,面积.令,则,,令,则,,在定义域内单调递减,.综上所述:四边形面积的取值范围是.【点睛】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.18、(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)函数在有3个零点.【解析】
(Ⅰ)求出导数,写出切线方程;(Ⅱ)二次求导,判断单调递减,结合零点存在性定理,判断即可;(Ⅲ),数形结合得出结论.【详解】解:(Ⅰ),,,故在点,处的切线方程为,即;(Ⅱ)证明:,,,故在递减,又,,由零点存在性定理,存在唯一一个零点,,当时,递增;当时,递减,故在只有唯一的一个极大值;(Ⅲ)函数在有3个零点.【点睛】本题主要考查利用导数求切线方程,考查零点存在性定理的应用,关键是能够通过导函数的单调性和零点存在定理确定导函数的零点个数,进而确定函数的单调性,属于难题.19、(1)见解析;(2).【解析】
(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【详解】(1)证明:取的中点,连接.是的中点,,又,四边形是平行四边形.,又平面平面,平面.(2),,同理可得:,又平面.连接,设,则,建立空间直角坐标系.设平面的法向量为,则,则,取.直线与平面所成角的正弦值为.【点睛】此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.20、(1)(2)①②第一种抽奖方案.【解析】
(1)方案一中每一次摸到红球的概率为,每名顾客有放回的抽3次获180元返金劵的概率为,根据相互独立事件的概率可知两顾客都获得180元返金劵的概率(2)①分别计算方案一,方案二顾客获返金卷的期望,方案一列出分布列计算即可,方案二根据二项分布计算期望即可②根据①得出结论.【详解】(1)选择方案一,则每一次摸到红球的概率为设“每位顾客获得180元返金劵”为事件A,则所以两位顾客均获得180元返金劵的概率(2)①若选择抽奖方案一,则每一次摸到红球的概率为,每一次摸到白球的概率为.设获得返金劵金额为元,则可能的取值为60,100,140,180.则;;;.所以选择抽奖方案一,该顾客获得返金劵金额的数学期望为(元)若选择抽奖方案二,设三次摸球的过程中,摸到红球的次数为,最终获得返金劵的金额为元,则,故所以选择抽奖方案二,该顾客获得返金劵金额的数学期望为(元).②即,所以该超市应选择第一种抽奖方案【点睛】本题主要考查了古典概型,相互独立事件的概率,二项分布,期望,及概率知识在实际问题中的应用,属于中档题.21、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 温泉租赁合同
- 长期车库租赁协议
- 医院特殊设备安装工程合同样本
- 音乐会停车位租赁协议
- 体育场馆建设项目总承包合同
- 2025版股东间股权转让与利润分配协议范本3篇
- 2025版智能防盗门代理销售合同细则
- 审计局审计员聘用合同样本
- 土地复垦绿化书
- 电子产品净化系统建设合同
- 计算书-过滤器(纤维)
- 《有机波谱分析》期末考试试卷及参考答案
- 地源热泵维修规程
- 双块式无砟轨道道床板裂纹成因分析应对措施
- FZ∕T 62044-2021 抗菌清洁巾
- 净水厂课程设计
- 全级老年大学星级学校达标评价细则
- 模具维护保养PPT课件
- 《新媒体文案写作》试卷4
- 【模板】OTS认可表格
- 2021国家开放大学电大本科《流行病学》期末试题及答案
评论
0/150
提交评论