版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春十一中2025届高考数学倒计时模拟卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.2.函数()的图像可以是()A. B.C. D.3.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.4.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.5.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.46.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.7.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()A. B. C.2 D.8.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A. B. C. D.9.已知集合,集合,则()A. B. C. D.10.集合,则()A. B. C. D.11.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.12.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若变量x,y满足:,且满足,则参数t的取值范围为_______.14.设满足约束条件,则目标函数的最小值为_.15.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:①的值域为;②;③;④其中正确的结论是_______(写出所有正确的结论的序号)16.若函数恒成立,则实数的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818.(12分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.(1)若,且恰为的左焦点,求的两条渐近线的方程;(2)若,且,求实数的值;(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.19.(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)①求证:四边形是平行四边形.②四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.20.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;21.(12分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).(1)求曲线的极坐标方程;(2)若曲线与相交于、、三点,求线段的长.22.(10分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.2、B【解析】
根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【详解】由题可知:,所以当时,,又,令,则令,则所以函数在单调递减在单调递增,故选:B【点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.3、D【解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.4、D【解析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.5、D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题6、B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.7、C【解析】
建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为可得到点的坐标为:故得到故得到,故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.8、C【解析】
求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论.【详解】,.若存在极值,则,又.又.故选:C.【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.9、D【解析】
可求出集合,,然后进行并集的运算即可.【详解】解:,;.故选.【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算.10、D【解析】
利用交集的定义直接计算即可.【详解】,故,故选:D.【点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.11、C【解析】
画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.12、A【解析】
先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据变量x,y满足:,画出可行域,由,解得直线过定点,直线绕定点旋转与可行域有交点即可,再结合图象利用斜率求解.【详解】由变量x,y满足:,画出可行域如图所示阴影部分,由,整理得,由,解得,所以直线过定点,由,解得,由,解得,要使,则与可行域有交点,当时,满足条件,当时,直线得斜率应该不小于AC,而不大于AB,即或,解得,且,综上:参数t的取值范围为.故答案为:【点睛】本题主要考查线性规划的应用,还考查了转化运算求解的能力,属于中档题.14、【解析】
根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数取得最小值.【详解】由满足约束条件,画出可行域如图所示阴影部分:将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点此时,目标函数取得最小值,最小值为故答案为:-1【点睛】本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.15、②【解析】
根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④.【详解】对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以①错误;对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以②正确;对于③,因为,当为无理数时,可以是有理数,也可以是无理数,所以③错误;对于④,由定义可知,所以④错误;综上可知,正确的为②.故答案为:②.【点睛】本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.16、【解析】
若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得。【详解】由题意得,只要即可,,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,,若恒成立,则,解得;当时,恒成立;当时,,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【点睛】本题考查恒成立条件下,求参数的取值范围,是常考题型。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】
(1)根据题意填写列联表,利用公式求出,比较与6.635的大小得结论;(2)由样本数据可得经常阅读的人的概率是,则,根据二项分布的期望公式计算可得;【详解】解:(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)根据样本估计,从该地区城镇居民中随机抽取1人,抽到经常阅读的人的概率是,且,所以随机变量的期望为.【点睛】本题考查独立性检验的应用,考查离散型随机变量的数学期望的计算,考查运算求解能力,属于基础题.18、(1);(2);(2)见解析.【解析】
(1)由圆的方程求出点坐标,得双曲线的,再计算出后可得渐近线方程;(2)设,由圆方程与双曲线方程联立,消去后整理,可得,,由先求出,回代后求得坐标,计算;(3)由已知得,设,由圆方程与双曲线方程联立,消去后整理,可解得,,求出,从而可得,由,可知满足要求的点不存在.【详解】(1)由题意圆方程为,令得,∴,即,∴,,∴渐近线方程为.(2)由(1)圆方程为,,设,由得,(*),,,,所以,即,解得,方程(*)为,即,,代入双曲线方程得,∵在第一、四象限,∴,,∴.(3)由题意,,,,,设由得:,,由得,解得,,,所以,,,当且仅当三点共线时,等号成立,∴轴上不存在点,使得.【点睛】本题考查求渐近线方程,考查圆与双曲线相交问题.考查向量的加法运算,本题对学生的运算求解能力要求较高,解题时都是直接求出交点坐标.难度较大,属于困难题.19、(1);(2)①证明见解析;②能,.【解析】
(1)根据抛物线的定义,求出,即可求抛物线C的方程;(2)①设,,写出切线的方程,解方程组求出点的坐标.设点,直线AB的方程,代入抛物线方程,利用韦达定理得到点的坐标,写出点的坐标,,可得线段相互平分,即证四边形是平行四边形;②若四边形为矩形,则,求出,即得点Q的坐标.【详解】(1)因为,所以,即抛物线C的方程是.(2)①证明:由得,.设,,则直线PA的方程为(ⅰ),则直线PB的方程为(ⅱ),由(ⅰ)和(ⅱ)解得:,,所以.设点,则直线AB的方程为.由得,则,,所以,所以线段PQ被x轴平分,即被线段CD平分.在①中,令解得,所以,同理得,所以线段CD的中点坐标为,即,又因为直线PQ的方程为,所以线段CD的中点在直线PQ上,即线段CD被线段PQ平分.因此,四边形是平行四边形.②由①知,四边形是平行四边形.若四边形是矩形,则,即,解得,故当点Q
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全过程工程咨询2024年合作协议3篇
- 二零二四年度商品代购服务合同2篇
- 弱点系统升级改造劳务合同(2024年)2篇
- 重庆市万州二中教育集团2024-2025学年 七年级上学期第二次综合素质测评(期中考试)数学试题
- 2024年汽车经销商联盟展场布置合同3篇
- 2024年度软件许可合同模板2篇
- 2024年全新抚养费支付标准协议3篇
- 新版2024年二手房购买合同2篇
- 2024年员工股票期权合同2篇
- 高效消防水池维修服务合同(2024年)2篇
- Unit+1+Knowing+me,+knowing+you+Developing+ideas课件【知识精讲精研】高中英语外研版(2019)必修第三册
- T SISTB002-2020 智慧楼宇评价指标体系3.0
- 例谈思政教育在中学数学中的融合与实施 论文
- 初中数学课件《切割线定理》
- 相似品管理规范
- 老版入团志愿书表格(空白)
- 陶棍幕墙施工方案
- 科学版五年级《体育与健康基础知识-体育活动与营养》说课稿
- 混凝土减水剂测试指标培训课件
- 走进舞蹈艺术-首都师范大学中国大学mooc课后章节答案期末考试题库2023年
- 高标准农田跟踪审计投标合理化建议
评论
0/150
提交评论