数学学案:预习导航函数的应用(Ⅰ)_第1页
数学学案:预习导航函数的应用(Ⅰ)_第2页
数学学案:预习导航函数的应用(Ⅰ)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精预习导航课程目标学习脉络1.利用所学知识,解决一次函数型、二次函数型及分段函数型的实际问题.2.掌握求解函数应用题的基本步骤,培养学生的数学应用意识。一、常见函数模型1.一次函数模型解析式:y=kx+b(k≠0).2.二次函数模型(1)一般式:y=ax2+bx+c(a≠0);(2)顶点式:y=a(x-h)2+k(a≠0),其中顶点坐标为(h,k).3.分段函数模型有些实际问题,在事物的某个阶段对应的变化规律不尽相同,此时我们可以选择利用分段函数模型来刻画它,由于分段函数在不同的区间中具有不同的解析式,因此分段函数在研究条件变化的实际问题中,或者在某一特定条件下的实际问题中具有广泛的应用.特别提醒(1)在求其解析式时,应先确定分“段”,即函数分成几段,并抓住“分界点",确保分界点“不重,不漏”.(2)求函数值时,先确定自变量的值所属的区间,再代入;同样,已知函数值,求解自变量的值时,就是解方程的过程,即每段都令y取已知函数值,解出相应x的值,再判断是否属于所在区间.思考1在函数建模中,怎样确立两个变量是哪种函数关系?提示:通常需要先画出函数图象,根据图象来确定两个变量的关系,选择函数类型.思考2在实际应用中,函数自变量有什么特点?提示:在实际应用中,函数的自变量x往往具有实际意义,如x表示长度时,x≥0;x表示件数时,x≥0,且x∈Z等.在解答时,必须要考虑这些实际意义.二、解决数学应用题的一般步骤解应用题,首先要在阅读材料、理解题意的基础上,把实际问题抽象为数学问题,就是从实际问题出发,经过去粗取精、抽象概括,利用数学知识建立相应的数学模型,再利用数学模型进行分析、研究,得到数学结论,然后再把数学结论返回到实际问题中去,或取或舍或重新修正模型,直到适合为止.其一般思路可表示如下:思考3对教材例2中的“客房问题”你有什么体会?在现实问题中,有没有与它类似的问题?如果有,请举例说明.提示:“客房问题”反映的规律性在实际生活中有很多典例,实际归结到最后,“客房问题”是一个二次函数模型的具体应用,在现实生活中的“调价问题”与其类似,其模型为:当某类商品在销售价格为b元时,可售出a件,现欲提价,若单价每提高m元,则销售量平均减少n件,求提高多少元时销售的总收入最高?设将商品售价提高x个m元,则总收入为y=(b+xm)·(a-xn)=-mnx2+(am

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论