版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆昌吉市教育共同体四校高三冲刺模拟数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中既关于直线对称,又在区间上为增函数的是()A.. B.C. D.2.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.3.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.4.若实数满足不等式组则的最小值等于()A. B. C. D.5.若复数满足,则(其中为虚数单位)的最大值为()A.1 B.2 C.3 D.46.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()A. B.C. D.7.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)()A.3.132 B.3.137 C.3.142 D.3.1478.已知随机变量服从正态分布,,()A. B. C. D.9.已知集合,,则()A. B.C. D.10.已知复数,则的虚部是()A. B. C. D.111.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.512.已知函数在区间有三个零点,,,且,若,则的最小正周期为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线C:(,)的顶点到渐近线的距离为,则的最小值________.14.某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是______.(用数字作答)15.已知数列的前项和公式为,则数列的通项公式为___.16.命题“”的否定是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列的前项和为,且.数列满足,其前项和为.(1)求数列与的通项公式;(2)设,求数列的前项和.18.(12分)在中,内角的边长分别为,且.(1)若,,求的值;(2)若,且的面积,求和的值.19.(12分)已知实数x,y,z满足,证明:.20.(12分)在锐角中,角A,B,C所对的边分别为a,b,c.已知.(1)求的值;(2)当,且时,求的面积.21.(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.22.(10分)已知函数,其中.(1)讨论函数的零点个数;(2)求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,,所以不关于直线对称,则错误;B中,,所以在区间上为减函数,则错误;D中,,而,则,所以不关于直线对称,则错误;故选:C.【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.2、D【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.3、C【解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.4、A【解析】
首先画出可行域,利用目标函数的几何意义求的最小值.【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以.故选:A.【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.5、B【解析】
根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【点睛】本题考查了复数模的定义及其几何意义应用,属于基础题.6、C【解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.【详解】如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.故选:C【点睛】本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.7、B【解析】
结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:.故选:B【点睛】本题考查随机模拟的概念和几何概型,属于基础题8、B【解析】
利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.9、C【解析】
求出集合,计算出和,即可得出结论.【详解】,,,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.10、C【解析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.11、D【解析】
根据复数的四则运算法则先求出复数z,再计算它的模长.【详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.12、C【解析】
根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,,,当时,,∴由对称轴可知,满足,即.同理,满足,即,∴,,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【详解】由双曲线C:(,,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.14、【解析】
基本事件总数,恰好有2人申请小区房源包含的基本事件个数,由此能求出该市的任意5位申请人中,恰好有2人申请小区房源的概率.【详解】解:某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,该市的任意5位申请人中,基本事件总数,该市的任意5位申请人中,恰好有2人申请小区房源包含的基本事件个数:,该市的任意5位申请人中,恰好有2人申请小区房源的概率是.故答案为:.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于中档题.15、【解析】
由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式.【详解】由题意,可知当时,;当时,.又因为不满足,所以.【点睛】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题.16、,【解析】
根据特称命题的否定为全称命题得到结果即可.【详解】解:因为特称命题的否定是全称命题,所以,命题,则该命题的否定是:,故答案为:,.【点睛】本题考查全称命题与特称命题的否定关系,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)令可求得的值,令,由得出,两式相减可推导出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求得数列的通项公式,再利用对数的运算性质可得出数列的通项公式;(2)运用等差数列的求和公式,运用数列的分组求和和裂项相消求和,化简可得.【详解】(1)当时,,所以;当时,,得,即,所以,数列是首项为,公比为的等比数列,.;(2)由(1)知数列是首项为,公差为的等差数列,.,.所以.【点睛】本题考查数列的递推式的运用,注意结合等比数列的定义和通项公式,考查数列的求和方法:分组求和法和裂项相消求和,考查运算能力,属于中档题.18、(1);(2).【解析】
(1)先由余弦定理求得,再由正弦定理计算即可得到所求值;
(2)运用二倍角的余弦公式和两角和的正弦公式,化简可得sinA+sinB=5sinC,运用正弦定理和三角形的面积公式可得a,b的方程组,解方程即可得到所求值.【详解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【点睛】本题考查正弦定理、余弦定理和面积公式的运用,以及三角函数的恒等变换,考查化简整理的运算能力,属于中档题.19、见解析【解析】
已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【详解】,.由柯西不等式得,...【点睛】本题考查柯西不等式的应用,属于基础题.20、(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隐含条件.(2)利用(1)中的结论,结合正弦定理和同角三角函数的关系易得的值,又由求出的值,最后由正弦定理求出的值,根据三角形的面积公式即可计算得出.【详解】(1)由已知可得,所以,因为在锐角中,,所以(2)因为,所以,因为是锐角三角形,所以,所以.由正弦定理可得:,所以,所以【点睛】此类问题是高考的常考题型,主要考查了正弦定理、三角函数以及三角恒等变换等知识,同时考查了学生的基本运算能力和利用三角公式进行恒等变换的技能,属于中档题.21、(1);(2)【解析】
(1)根据已知可得数列为等比数列,即可求解;(2)由(1)可得为等比数列,根据等比数列和等差数列的前项和公式,即可求解.【详解】(1)因为,所以,又所以数列为等比数列,且首项为,公比为.故(2)由(1)知,所以所以【点睛】本题考查等比数列的定义及通项公式、等差数列和等比数列的前项和,属于基础题.22、(1)时,有一个零点;当且时,有两个零点;(2)见解析【解析】
(1)利用的导函数,求得的最大值的表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投标合作协议范本 3篇
- 2024年度二手艺术品抵押借款合同2篇
- 基于2024年度市场预测的股票投资咨询合同
- 泳池安全责任合同范本
- 温室环境监测系统开发2024年度合同
- 家具购买合同模板版
- 国际货物运输服务管理合同
- 模具维修改模合同完整版
- 吊车设备租赁及购买2024年度合同(含培训服务)2篇
- 2024年度离婚案件律师陪同谈判服务合同3篇
- GB/T 19342-2024手动牙刷一般要求和检测方法
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- QC080000培训资料课件
- 《研学旅行课程设计》课件-学习情境三 研之有方-研学课程教学设计
- 音乐教师职业生涯发展报告
- 年晋升司机理论考试HXD1专业知识题库
- 苯氯苯连续精馏塔设计二设计正文
- 焊缝焊条用量的计算公式
- 浆砌块石施工方法
- (推荐)浅谈初中学生英语写作中存在的问题、原因及解决策略
评论
0/150
提交评论