




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十五章概率25.3用频率估计概率一、教学目标1.理解试验次数较大时试验频率趋于稳定这一规律;(重点)
2.结合具体情境掌握如何用频率估计概率;(重点)
3.结合生活实例,进一步理解频率与概率的区别和联系.二、教学重难点重点:.理解试验次数较大时试验频率趋于稳定这一规律难点:结合具体情境掌握如何用频率估计概率;三、教学过程【新课导入】[思考]1.抛掷一枚均匀硬币,硬币落地后,会出现哪些可能的结果呢?出现“正面朝上”和“反面朝上”两种情况2.它们的概率是多少呢?都是3.在实际掷硬币时,会出现什么情况呢?【新知探究】[试验]:掷硬币
(1)抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数,并算出“正面朝上”的频率,完成下表:累计抛掷次数50100150200250300350400“正面朝上”的频数234678102123150175200“正面朝上”的频率0.450.460.520.510.490.500.500.50根据上表的数据,在下图中画统计图表示“正面朝上”的频率.
(3)在上图中,用红笔画出表示频率为的直线,你发现了什么?试验次数越多频率越接近0.5,即频率稳定于概率.
(4)下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?试验者抛掷次数n“正面向上”的次数m“正面向上”频()棣莫弗204810610.5181布丰404020480.5069费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005实际上,在长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.
[归纳总结]一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么事件A发生的概率P(A)=p.特别提醒:概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.比如在抛掷硬币的试验中,“正面向上”的概率是0.5,连续掷2次,结果不一定是“正面向上”和“反面向上”各一次.只是当n越来越大时,正面向上的频率越来越稳定0.5.问题1某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?移植总数(n)成活数(m)成活的频率()1080.80050470.9402702350.8704003690.9237506620.8831500135350.890350032030.915700063350.905900080730.89714000126280.902由下表可以发现,随着移植数的增加,幼树移植成活的频率越来越稳定.于是可以估计幼树移植成活的概率0.9移植总数(n)成活数(m)成活的频率()1080.80050470.9402702350.8704003690.9237506620.8831500135350.890350032030.915700063350.905900080730.89714000126280.902问题2某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
销售人员首先从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录在下表中.请你帮忙完成下表分析根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.柑橘总质量(n)/千克损坏柑橘质量(m)/千克柑橘损坏的频率()505.500.11010010.50.10515015.150.10120019.420.09725024.250.09730030.930.10335035.320.10140039.240.09845044.570.09950051.540.1.3由上表可知:柑橘损坏率是0.10,完好率是0.90。解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为
设每千克柑橘的销价为x元,则应有
(x-2.22)×9000=5000,
解得x≈2.8.
因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.
例某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4000名、5000名时分别计算了各种颜色的频率,绘制折线图如下:(1)随着调查次数的增加,红色的频率如何变化?随着调查次数的增加,红色的频率基本稳定在0.4左右.(2)你能估计调查到10000名同学时,红色的频率是多少吗?估计调查到10000名同学时,红色的频率大约仍是0.4左右.(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?红、黄、蓝、绿及其他颜色的生产比例大约为4:2:2:1:1【课堂小结】1.弄清了一种关系---频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
2.了解了一种方法---用多次试验频率去估计概率.
3.体会了一种思想---用样本去估计总体,用频率去估计概率.【课堂训练】1.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是(A)
A.5 B.10 C.12 D.15
2.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:
身高x/cmx<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是(C)
A.0.32 B.0.55 C.0.68 D.0.87
3.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率稳定在.
4.在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有17个.5.新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长t(单位:小时)的情况,在全市范围内随机抽取了n名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:
(1)在这次调查活动中,采取的调查方式是抽样调查(“全面调查”或“抽样调查”),n=500;(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“3≤t<4”范围的概率是0.3;
(3)若该市有15000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【房屋租赁合同】街面房出租合同4篇
- 2025年装修泥水工程承包合同2篇
- 7技术合同非专利技术转让合同3篇
- 景观设计总结汇报
- 大米包装设计调研报告
- 2025辽宁装备制造职业技术学院辅导员考试试题及答案
- 2025贵州医科大学辅导员考试试题及答案
- 2025贵阳幼儿师范高等专科学校辅导员考试试题及答案
- 2025萍乡卫生职业学院辅导员考试试题及答案
- 2025甘肃建筑职业技术学院辅导员考试试题及答案
- (新版)旅游接待业理论考试题库(含各题型)
- 不符合工作处理记录表
- 高管人员绩效考核方案
- xx旅游股份有限公司财务管理制度
- DB32-T 4338-2022 高速公路桥梁支座安装施工技术规范
- 直螺纹套筒进场检查记录
- Q∕GDW 12177-2021 供电服务记录仪技术规范
- 形式发票--INVOICE(跨境-)
- 某路延伸段新建市政工程施工设计方案
- 110kV变电站操作规程
- 温州市住房公积金补贴提取申请表
评论
0/150
提交评论