版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市和桥区重点达标名校2023-2024学年中考猜题数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个 B.15个 C.13个 D.12个2.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2π B.4π C.6π D.8π3.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×1054.函数(为常数)的图像上有三点,,,则函数值的大小关系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y15.方程x(x-2)+x-2=0的两个根为()A., B.,C., D.,6.不等式组的解集在数轴上可表示为()A. B. C. D.7.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边 B.介于A、B之间C.介于B、C之间 D.在C的右边8.计算x﹣2y﹣(2x+y)的结果为()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y9.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书10.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣4二、填空题(共7小题,每小题3分,满分21分)11.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.12.我们知道方程组的解是,现给出另一个方程组,它的解是____.13.若正六边形的边长为2,则此正六边形的边心距为______.14.在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE的长为_____.15.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.16.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.17.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.三、解答题(共7小题,满分69分)18.(10分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.19.(5分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?20.(8分)在平面直角坐标系xOy中,抛物线y=12x(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.21.(10分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?22.(10分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.23.(12分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面积.24.(14分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
请根据所给信息,解答以下问题:
表中___;____请计算扇形统计图中B组对应扇形的圆心角的度数;
已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,
∵摸到红色球的频率稳定在25%左右,
∴口袋中得到红色球的概率为25%,
∴,
解得:x=12,
经检验x=12是原方程的根,
故白球的个数为12个.
故选:D.【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.2、B【解析】
先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.【详解】在△ABC中,依据勾股定理可知AB==8,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积==4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.3、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:1.21万=1.21×104,故选:C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、A【解析】试题解析:∵函数y=(a为常数)中,-a1-1<0,∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故选A.5、C【解析】
根据因式分解法,可得答案.【详解】解:因式分解,得(x-2)(x+1)=0,
于是,得x-2=0或x+1=0,
解得x1=-1,x2=2,
故选:C.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.6、A【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.7、C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.8、C【解析】
原式去括号合并同类项即可得到结果.【详解】原式,故选:C.【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.9、D【解析】试题分析:找到一定发生或一定不发生的事件即可.A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件.故选D.考点:随机事件.10、D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、210°【解析】
根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12、【解析】
观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.13、.【解析】
连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.【详解】连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.14、或【解析】
由,,得,所以.再以①和②两种情况分类讨论即可得出答案.【详解】因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.若点在矩形ABCD的内部时,如图则GF=AB=4,由可知.又..又....若则,..则...若则,..则...故答案或.【点睛】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点A′A′到矩形较长两对边的距离之比为1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.15、【解析】
设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.【详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,
由折叠可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的长等于AB=.故答案为.16、41【解析】
已知一元二次方程的根判别式为△=b2﹣4ac,代入计算即可求解.【详解】依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案为:41【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac是解决问题的关键.17、x(x﹣1)=1【解析】【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=1,故答案为x(x﹣1)=1.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.三、解答题(共7小题,满分69分)18、1.【解析】
直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.【详解】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=1.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.19、(1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【详解】解:(1)yB=-0.2x2+1.6x,(2)一次函数,yA=0.4x,(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元,则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴当x=3时,W最大值=7.8,答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.20、(1)y=12x+1【解析】试题分析:(1)首先根据抛物线y=12x2-x+2求出与y轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为y=kx+b.代入点B,点C的坐标,然后解方程组即可;(2)求出点D、E、F的坐标,设点A平移后的对应点为点A',点D平移后的对应点为点D'.当图象G向下平移至点A'与点E重合时,点D'在直线BC上方,此时t=1;当图象G向下平移至点D'试题解析:解:(1)∵抛物线y=12x∴点A的坐标为(0,2).1分∵y=1∴抛物线的对称轴为直线x=1,顶点B的坐标为(1,32又∵点C与点A关于抛物线的对称轴对称,∴点C的坐标为(2,2),且点C在抛物线上.设直线BC的解析式为y=kx+b.∵直线BC经过点B(1,32∴k+b=32∴直线BC的解析式为y=1(2)∵抛物线y=1当x=4时,y=6,∴点D的坐标为(1,6).1分∵直线y=1当x=0时,y=1,当x=4时,y=3,∴如图,点E的坐标为(0,1),点F的坐标为(1,2).设点A平移后的对应点为点A',点D平移后的对应点为点D'.当图象G向下平移至点A'与点E重合时,点D'在直线BC上方,此时t=1;5分当图象G向下平移至点D'与点F重合时,点A'在直线BC下方,此时t=2.6分结合图象可知,符合题意的t的取值范围是1<t≤考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.21、赚了520元【解析】
(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.【详解】(1)设第一次购书的单价为x元,根据题意得:+10=,解得:x=5,经检验,x=5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.【点睛】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、(1)y=﹣(x﹣1)2+9,D(1,9);(2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.详解:(1)∵抛物线y=ax2+2x+1经过点B(4,0),∴16a+1+1=0,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵当x=0时,y=1,∴C(0,1).设直线CD的解析式为y=kx+b.将点C、D的坐标代入得:,解得:k=1,b=1,∴直线CD的解析式为y=x+1.当y=0时,x+1=0,解得:x=﹣1,∴直线CD与x轴的交点坐标为(﹣1,0).∵当P在直线CD上时,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如图,由(2)知,C(0,1),∵B(4,0),∴直线BC的解析式为y=﹣2x+1,过点Q作QE∥y轴交BC于E,设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),∴EQ=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商业租赁场地简易合同样本一
- 2024土地承包合同范本
- 2024年度融资合同涉及中小企业发展2篇
- 2024年度全职妈妈离婚前个人品牌建设合同
- 二零二四年度联合研发合同:某制药企业的联合研发2篇
- 2024年度金融服务与咨询合同:某银行与某企业的企业金融服务合作2篇
- 2024年城市基础设施建设bt项目合同
- 二零二四年度股权激励计划设计与实施顾问合同3篇
- 2024学校用品采购合同
- 二零二四年度围墙及门楼文化遗产保护合同
- 电力设施维保服务方案
- 锅炉电梯井外彩钢板封闭工程施工方案
- 外墙真石漆专项施工方案(48页)
- 让文化融入城建??让城市更有品位——人大调研报告(1)
- 医疗质量管理与持续改进记录表(完整版)
- 政策智能匹配与精准推送服务平台项目方案
- 廉洁校园你我共塑PPT课件(带内容)
- 垃圾分类(课堂PPT)
- 土地复垦方案编制规程第1部分通则
- 小学五年级家长会优秀ppt课件
- 钛合金项目效益分析报告(模板范本)
评论
0/150
提交评论