




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年浙江省中考数学试卷一、选择题(每题3分)1.(3分)以下四个城市中某天中午12时气温最低的城市是()北京济南太原郑州0℃﹣1℃﹣2℃3℃A.北京 B.济南 C.太原 D.郑州2.(3分)5个相同正方体搭成的几何体主视图为()A. B. C. D.3.(3分)2024年浙江经济一季度GDP为201370000万元,其中201370000用科学记数法表示为()A.20.137×109 B.0.20137×108 C.2.0137×109 D.2.0137×1084.(3分)下列式子运算正确的是()A.x3+x2=x5 B.x3•x2=x6 C.(x3)2=x9 D.x6÷x2=x45.(3分)菜鸡班有5位学生参加志愿服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为()A.7 B.8 C.9 D.106.(3分)如图,在平面直角坐标系中,△ABC与△A′B′C′是位似图形,位似中心为点O.若点A(﹣3,1)的对应点为A′(﹣6,2),则点B(﹣2,4)的对应点B′的坐标为()A.(﹣4,8) B.(8,﹣4) C.(﹣8,4) D.(4,﹣8)7.(3分)不等式组的解集在数轴上表示为()A. B. C. D.8.(3分)如图,正方形ABCD由四个全等的直角三角形(△ABE,△BCF,△CDG,△DAH)和中间一个小正方形EFGH组成,连接DE.若AE=4,BE=3,则DE=()A.5 B. C. D.49.(3分)反比例函数的图象上有P(t,y1),Q(t+4,y2)两点.下列正确的选项是()A.当t<﹣4时,y2<y1<0 B.当﹣4<t<0时,y2<y1<0 C.当﹣4<t<0时,0<y1<y2 D.当t>0时,0<y1<y210.(3分)如图,在▱ABCD中,AC,BD相交于点O,AC=2,.过点A作AE⊥BC的垂线交BC于点E,记BE长为x,BC长为y.当x,y的值发生变化时,下列代数式的值不变的是()A.x+y B.x﹣y C.xy D.x2+y2二、填空题(每题3分)11.(3分)因式分解:a2﹣7a=.12.(3分)若,则x=.13.(3分)如图,AB是⊙O的直径,AC与⊙O相切,A为切点,连接BC.已知∠ACB=50°,则∠B的度数为.14.(3分)有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是.15.(3分)如图,D,E分别是△ABC边AB,AC的中点,连接BE,DE.若∠AED=∠BEC,DE=2,则BE的长为.16.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,.线段AB与A′B′关于过点O的直线l对称,点B的对应点B′在线段OC上,A′B′交CD于点E,则△B′CE与四边形OB′ED的面积比为.三、解答题(17-21每题8分,22、23每题10分,24题12分)17.(8分)计算:.18.(8分)解方程组:.19.(8分)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.20.(8分)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是(A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是(E)辅助学习(F)虚拟体验(G)智能生活(H)其他根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.21.(8分)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明AF∥CE;(2)指出小丽作法中存在的问题.22.(10分)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C档比B档快40米/分、B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间里程分段速度档跑步里程小明16:00~16:50不分段A档4000米小丽16:10~16:50第一段B档1800米第一次休息第二段B档1200米第二次休息第三段C档1600米(1)求A,B,C各档速度(单位:米/分);(2)求小丽两次休息时间的总和(单位:分);(3)小丽第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.23.(10分)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(﹣2,5),对称轴为直线.(1)求二次函数的表达式;(1)若点B(1,7)向上平移2个单位长度,向左平移m(m>0)个单位长度后,恰好落在y=x2+bx+c的图象上,求m的值;(3)当﹣2≤x≤n时,二次函数y=x2+bx+c的最大值与最小值的差为,求n的取值范围.24.(12分)如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60°,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.
2024年浙江省中考数学试卷参考答案与试题解析一、选择题(每题3分)1.(3分)以下四个城市中某天中午12时气温最低的城市是()北京济南太原郑州0℃﹣1℃﹣2℃3℃A.北京 B.济南 C.太原 D.郑州【答案】C【解答】解:|﹣1|=1,|﹣2|=2,∵1<2,∴﹣1>﹣2;∵3℃>0℃>﹣1℃>﹣2℃,∴所给的四个城市中某天中午12时气温最低的城市是太原.故选:C.2.(3分)5个相同正方体搭成的几何体主视图为()A. B. C. D.【答案】B【解答】解:从正面看,共有三列,从左到右小正方形的个数分别为2、2、1.故选:B.3.(3分)2024年浙江经济一季度GDP为201370000万元,其中201370000用科学记数法表示为()A.20.137×109 B.0.20137×108 C.2.0137×109 D.2.0137×108【答案】D【解答】解:201370000=2.0137×108,故选:D.4.(3分)下列式子运算正确的是()A.x3+x2=x5 B.x3•x2=x6 C.(x3)2=x9 D.x6÷x2=x4【答案】D【解答】解:A.x3+x2不能合并同类项,故本选项不符合题意;B.x3•x2=x5,故本选项不符合题意;C.(x3)2=x6,故本选项不符合题意;D.x6÷x2=x4,故本选项符合题意;故选:D.5.(3分)菜鸡班有5位学生参加志愿服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为()A.7 B.8 C.9 D.10【答案】B【解答】解:菜鸡班有5位学生参加志愿服务次数为:7,7,8,10,13,从小到大排列排在中间的数是8,所以这5位学生志愿服务次数的中位数为8.故选:B.6.(3分)如图,在平面直角坐标系中,△ABC与△A′B′C′是位似图形,位似中心为点O.若点A(﹣3,1)的对应点为A′(﹣6,2),则点B(﹣2,4)的对应点B′的坐标为()A.(﹣4,8) B.(8,﹣4) C.(﹣8,4) D.(4,﹣8)【答案】A【解答】解:∵△ABC与△A′B′C′是位似图形,位似中心为点O,点A(﹣3,1)的对应点为A′(﹣6,2),∴△ABC与△A′B′C′的相似比为1:2,∵点B的坐标为(﹣2,4),∴点B的对应点B′的坐标为(﹣2×2,4×2),即(﹣4,8),故选:A.7.(3分)不等式组的解集在数轴上表示为()A. B. C. D.【答案】A【解答】解:,解不等式①得:x≥1,解不等式②得:x<4,∴原不等式组的解集为:1≤x<4,∴该不等式组的解集在数轴上表示如图所示:故选:A.8.(3分)如图,正方形ABCD由四个全等的直角三角形(△ABE,△BCF,△CDG,△DAH)和中间一个小正方形EFGH组成,连接DE.若AE=4,BE=3,则DE=()A.5 B. C. D.4【答案】C【解答】解:∵Rt△DAH≌Rt△ABE,∴DH=AE=4,AH=BE=3,∴EH=AE﹣AH=4﹣3=1,∵四边形形EFGH是正方形,∴∠DHE=90°,∴DE,故选:C.9.(3分)反比例函数的图象上有P(t,y1),Q(t+4,y2)两点.下列正确的选项是()A.当t<﹣4时,y2<y1<0 B.当﹣4<t<0时,y2<y1<0 C.当﹣4<t<0时,0<y1<y2 D.当t>0时,0<y1<y2【答案】A【解答】解:∵反比例函数中,k=4>0,∴此函数图象的两个分支分别位于第一、三象限,在每一象限内y随x的增大而减小,A、当t<﹣4时,t+4<0,∵t<t+4,∴y2<y1<0,正确,符合题意;B、当﹣4<t<0时,点P(t,y1)在第三象限,点Q(t+4,y2)在第一象限,∴y1<0,y2>0,∴y1<0<y2,原结论错误,不符合题意;C、由B知,当﹣4<t<0时,y1<0<y2,原结论错误,不符合题意;D、当t>0时,t+4>0,∴P(t,y1),Q(t+4,y2)在第一象限,∵t<t+4,∴y1>y2>0,原结论错误,不符合题意.故选:A.10.(3分)如图,在▱ABCD中,AC,BD相交于点O,AC=2,.过点A作AE⊥BC的垂线交BC于点E,记BE长为x,BC长为y.当x,y的值发生变化时,下列代数式的值不变的是()A.x+y B.x﹣y C.xy D.x2+y2【答案】C【解答】解:过D作DH⊥BC,交BC延长线于H,∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∵AE⊥BC,DH⊥BC,∴AE=DH,∴Rt△DCH≌Rt△ABE(HL),∴CH=BE=x,∵BC=y,∴EC=BC﹣BE=y﹣x,BH=BC+CH=y+x,∵AE2=AC2﹣EC2,DH2=BD2﹣BH2,∴22﹣(y﹣x)2(y+x)2,∴xy=2.故选:C.二、填空题(每题3分)11.(3分)因式分解:a2﹣7a=a(a﹣7).【答案】a(a﹣7).【解答】解:a2﹣7a=a(a﹣7).故答案为:a(a﹣7).12.(3分)若,则x=3.【答案】3.【解答】解:两边都乘以(x﹣1),得2=x﹣1,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3.故答案为:3.13.(3分)如图,AB是⊙O的直径,AC与⊙O相切,A为切点,连接BC.已知∠ACB=50°,则∠B的度数为40°.【答案】40°.【解答】解:∵AB是⊙O的直径,AC与⊙O相切,A为切点,∴BA⊥AC,∴∠BAC=90°,∵∠ACB=50°,∴∠B=90°﹣50°=40°.故答案为:40°.14.(3分)有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是.【答案】.【解答】解:∵有8张卡片,上面分别写着数1,2,3,4,5,6,7,8,其中该卡片上的数是4的整数倍的数是4,8,∴该卡片上的数是4的整数倍的概率是,故答案为:.15.(3分)如图,D,E分别是△ABC边AB,AC的中点,连接BE,DE.若∠AED=∠BEC,DE=2,则BE的长为4.【答案】4.【解答】解:∵D,E分别是△ABC边AB,AC的中点,∴BC=2DE=2×2=4,DE∥BC,∴∠AED=∠C,∵∠AED=∠BEC,∴∠BEC=∠C,∴BE=BC=4,故答案为:4.16.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,.线段AB与A′B′关于过点O的直线l对称,点B的对应点B′在线段OC上,A′B′交CD于点E,则△B′CE与四边形OB′ED的面积比为.【答案】.【解答】解:如图连接OE、A'D,∵AB关于过O的直线对称,∴A'在BD延长线上,∵,∴设AC=10k,BD=6k,在菱形ABCD中,OA=OC=5k,CB=OD=3k,∵AB与A'B'关于过O的直线对称,∴OA=OA'=5k,OB=OB'=3k,∠A'=∠DAC=∠DCA,∴A'D=B'C=2k,∵∠A'ED=∠B'CE,∴△A'ED≌△CEB'(AAS),∴DE=B'E,∵OE=OE,OD=OB',∴△DOE≌△B'OE(SSS),∴S△DOE=S△B′OE,∵,∴.故答案为:.三、解答题(17-21每题8分,22、23每题10分,24题12分)17.(8分)计算:.【答案】7.【解答】解:原式=4﹣2+5=7.18.(8分)解方程组:.【答案】.【解答】解:,①×3+②得:10x=5,解得:x,把x代入①得:2y=5,解得:y=﹣4,所以方程组的解是.19.(8分)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【答案】(1)14;(2).【解答】解:(1)∵AD⊥BC,AB=10,AD=6,∴BD8;∵tan∠ACB=1,∴CD=AD=6,∴BC=BD+CD=8+6=14;(2)∵AE是BC边上的中线,∴CE7,∴DE=CE﹣CD=7﹣6=1,∵AD⊥BC,∴,∴sin∠DAE.20.(8分)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是A(A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是E(E)辅助学习(F)虚拟体验(G)智能生活(H)其他根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.【答案】(1)32人;(2)324人.【解答】解:(1)80×40%=32(人),答:本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有32人;(2)1200324(人),答:估计该校最喜爱“科普讲座”的学生人数大约有324人.21.(8分)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明AF∥CE;(2)指出小丽作法中存在的问题.【答案】(1)证明见解答过程;(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.【解答】(1)证明:根据小明的作法知,CF=AE,∵四边形ABCD是平行四边形,∴AD∥BC,又∵CF=AE,∴四边形AFCE是平行四边形,∴AF∥CE;(2)解:以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.22.(10分)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C档比B档快40米/分、B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间里程分段速度档跑步里程小明16:00~16:50不分段A档4000米小丽16:10~16:50第一段B档1800米第一次休息第二段B档1200米第二次休息第三段C档1600米(1)求A,B,C各档速度(单位:米/分);(2)求小丽两次休息时间的总和(单位:分);(3)小丽第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.【答案】(1)A,B,C各档速度80米/分、120米/分、160米/分;(2)小丽两次休息时间的总和为5分钟;(3)a=42.5.【解答】解:(1)由题意可知,A档速度为4000÷50=80(米/分),则B档速度为80+40=120(米/分),C档速度为120+40=160(米/分),答:A,B,C各档速度80米/分、120米/分、160米/分.(2)小丽第一段跑步时间为1800÷120=15(分),小丽第二段跑步时间为(3000﹣1800)÷120=10(分),小丽第三段跑步时间为(4600﹣3000)÷160=10(分),则小丽两次休息时间的总和为50﹣10﹣15﹣10﹣10=5(分),答:小丽两次休息时间的总和为5分钟.(3)∵小丽第二次休息后,在a分钟时两人跑步累计里程相等,∴此时小丽在跑第三段,所跑时间为a﹣10﹣15﹣10﹣5=a﹣40(分),∴80a=3000+160(a﹣40),∴a=42.5.23.(10分)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(﹣2,5),对称轴为直线.(1)求二次函数的表达式;(1)若点B(1,7)向上平移2个单位长度,向左平移m(m>0)个单位长度后,恰好落在y=x2+bx+c的图象上,求m的值;(3)当﹣2≤x≤n时,二次函数y=x2+bx+c的最大值与最小值的差为,求n的取值范围.【答案】(1)y=x2+x+3;(2)m=4;(3)..【解答】解:(1)由题意,∵二次函数为y=x2+bx+c,∴抛物线为直线x.∴b=1.∴抛物线为y=x2+x+c.又图象经过点A(﹣2,5),∴4﹣2+c=5.∴c=3.∴抛物线为y=x2+x+3.(2)由题意,∵点B(1,7)向上平移2个单位长度,向左平移m个单位长度(m>0),∴平移后的点为(1﹣m,9).又(1﹣m,9)在y=x2+x+3,∴9=(1﹣m)2+(1﹣m)+3.∴m=4或m=﹣1(舍去).∴m=4.(3)由题意,当时,∴最大值与最小值的差为.∴,不符合题意,舍去.当时,∴最大值与最小值的差为,符合题意.当n>1时,最大值与最小值的差为,解得n1=1或n2=﹣2,不符合题意.综上所述,n的取值范围为.24.(12分)如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60°,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.【答案】(1)30°;(2)①详见解答;②详见解答.【解答】(1)解:∵CD为直径,∴∠CAD=90°,∵∠AFE=∠ADC=60°,∴∠ACD=90°﹣60°=30°,∴∠ABD=∠ACD=30°;(2)证明:①如图,延长AB,∵四边形ABCD是圆内接四边形,∴∠CBM=∠ADC,又∵∠AFE=∠ADC,∴∠AFE=∠CBM,∴EF∥BC;②过点D作DG∥BC交⊙O于点G,则DG∥BC∥EF,∵DG∥BC,∴,∴BD=CG,∵四边形BCGD是圆内接四边形,∴∠GDE=∠ACG,∵∠AFE=∠ADC,∠ADC=∠AGC,∴∠AFE=∠AGC,∵AE=AC,∴△AEF≌△ACG(AAS),∴EF=CG,∴EF=BD.2024年重庆市中考数学试卷(A卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑。1.(4分)下列四个数中,最小的数是()A.﹣2 B.0 C.3 D.2.(4分)下列四种化学仪器的示意图中,是轴对称图形的是()A. B. C. D.3.(4分)已知点(﹣3,2)在反比例函数y(k≠0)的图象上,则k的值为()A.﹣3 B.3 C.﹣6 D.64.(4分)如图,AB∥CD,∠1=65°,则∠2的度数是()A.105° B.115° C.125° D.135°5.(4分)若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是()A.1:3 B.1:4 C.1:6 D.1:96.(4分)烷烃是一类由碳、氢元素组成的有机化合物质,如图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A.20 B.22 C.24 D.267.(4分)已知m,则实数m的范围是()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4分)如图,在矩形ABCD中,分别以点A和C为圆心,AD长为半径画弧,两弧有且仅有一个公共点.若AD=4,则图中阴影部分的面积为()A.32﹣8π B.164π C.32﹣4π D.168π9.(4分)如图,在正方形ABCD的边CD上有一点E,连接AE,把AE绕点E逆时针旋转90°,得到FE,连接CF并延长与AB的延长线交于点G.则的值为()A. B. C. D.10.(4分)已知整式M:anxn+an﹣1xn﹣1+⋯+a1x+a0,其中n,an﹣1,…,a0为自然数,an为正整数,且n+an+an﹣1+⋯+a1+a0=5.下列说法:①满足条件的整式M中有5个单项式;②不存在任何一个n,使得满足条件的整式M有且仅有3个;③满足条件的整式M共有16个.其中正确的个数是()A.0 B.1 C.2 D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上。11.(4分)计算:(π﹣3)0+()﹣1=.12.(4分)如果一个多边形的每一个外角都是40°,那么这个多边形的边数为.13.(4分)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B的概率为.14.(4分)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元.该公司这两年缴税的年平均增长率是.15.(4分)如图,在△ABC中,延长AC至点D,使CD=CA,过点D作DE∥CB,且DE=DC,连接AE交BC于点F.若∠CAB=∠CFA,CF=1,则BF=.16.(4分)若关于x的不等式组至少有2个整数解,且关于y的分式方程2的解为非负整数,则所有满足条件的整数a的值之和为.17.(4分)如图,以AB为直径的⊙O与AC相切于点A,以AC为边作平行四边形ACDE,点D,E均在⊙O上,DE与AB交于点F,连接CE,与⊙O交于点G,连接DG.若AB=10,DE=8,则AF=,DG=.18.(4分)我们规定:若一个正整数A能写成m2﹣n,其中m与n都是两位数,且m与n的十位数字相同,个位数字之和为8,则称A为“方减数”,并把A分解成m2﹣n的过程,称为“方减分解”.例如:因为602=252﹣23,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成602=252﹣23的过程就是“方减分解”.按照这个规定,最小的“方减数”是.把一个“方减数”A进行“方减分解”,即A=m2﹣n,将m放在n的左边组成一个新的四位数B,若B除以19余数为1,且2m+n=k2(k为整数),则满足条件的正整数A为.三、解答题:(本大题8个小题,第19题8分,其余每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x﹣2y)+(x+y)2;(2)(1).20.(10分)为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x表示,共分成四组:A.60<x≤70;B.70<x≤80;C.80<x≤90;D.90<x≤100),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b众数a79根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生、八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀(x>90)的学生人数是多少?21.(10分)在学习了矩形与菱形的相关知识后,智慧小组进行了更深入的研究,他们发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他们的想法与思路,完成以下作图和填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE(不写作法,保留作图痕迹).(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且EF⊥AC.求证:四边形AECF是菱形.证明:∵四边形ABCD是矩形,∴AB∥CD.∴①,∠FCO=∠EAO.∵点O是AC的中点,∴②.∴△CFO≌△AEO(AAS).∴③.又∵OA=OC,∴四边形AECF是平行四边形.∵EF⊥AC,∴四边形AECF是菱形.进一步思考,如果四边形ABCD是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22.(10分)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?23.(10分)如图1,在△ABC中,AB=6,BC=8,点P为AB上一点,AP=x,过点P作PQ∥BC交AC于点Q.点P,Q的距离为y1,△ABC的周长与△APQ的周长之比为y2.(1)请直接写出y1,y2分别关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出函数y1,y2的图象,并分别写出函数y1,y2的一条性质;(3)结合函数图象,请直接写出y1>y2时x的取值范围(近似值保留小数点后一位,误差不超过0.2).24.(10分)如图,甲、乙两艘货轮同时从A港出发,分别向B,D两港运送物资,最后到达A港正东方向的C港装运新的物资.甲货轮沿A港的东南方向航行40海里后到达B港,再沿北偏东60°方向航行一定距离到达C港.乙货轮沿A港的北偏东60°方向航行一定距离到达D港,再沿南偏东30°方向航行一定距离到达C港.(参考数据:1.41,1.73,2.45)(1)求A,C两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B,D两港的时间相同),哪艘货轮先到达C港?请通过计算说明.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)经过点(﹣1,6),与y轴交于点C,与x轴交于A,B两点(A在B的左侧),连接AC,BC,tan∠CBA=4.(1)求抛物线的表达式;(2)点P是射线CA上方抛物线上的一动点,过点P作PE⊥x轴,垂足为E,交AC于点D.点M是线段DE上一动点,MN⊥y轴,垂足为N,点F为线段BC的中点,连接AM,NF.当线段PD长度取得最大值时,求AM+MN+NF的最小值;(3)将该抛物线沿射线CA方向平移,使得新抛物线经过(2)中线段PD长度取得最大值时的点D,且与直线AC相交于另一点K.点Q为新抛物线上的一个动点,当∠QDK=∠ACB时,直接写出所有符合条件的点Q的坐标.26.(10分)在△ABC中,AB=AC,点D是BC边上一点(点D不与端点重合).点D关于直线AB的对称点为点E,连接AD,DE.在直线AD上取一点F,使∠EFD=∠BAC,直线EF与直线AC交于点G.(1)如图1,若∠BAC=60°,BD<CD,∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)如图1,若∠BAC=60°,BD<CD,用等式表示线段CG与DE之间的数量关系,并证明;(3)如图2,若∠BAC=90°,点D从点B移动到点C的过程中,连接AE,当△AEG为等腰三角形时,请直接写出此时的值.
2024年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑。1.(4分)下列四个数中,最小的数是()A.﹣2 B.0 C.3 D.【答案】A【解答】解:∵﹣20<3,∴最小的数是:﹣2.故选:A.2.(4分)下列四种化学仪器的示意图中,是轴对称图形的是()A. B. C. D.【答案】C【解答】解:A、示意图不是轴对称图形,不符合题意;B、示意图不是轴对称图形,不符合题意;C、示意图是轴对称图形,符合题意;D、示意图不是轴对称图形,不符合题意;故选:C.3.(4分)已知点(﹣3,2)在反比例函数y(k≠0)的图象上,则k的值为()A.﹣3 B.3 C.﹣6 D.6【答案】C【解答】解:∵点(﹣3,2)在反比例函数y(k≠0)的图象上,∴k=﹣3×2=﹣6.故选:C.4.(4分)如图,AB∥CD,∠1=65°,则∠2的度数是()A.105° B.115° C.125° D.135°【答案】B【解答】解:∵AB∥CD,∴∠3=∠1=65°,∴∠2=180°﹣∠3=115°.故选:B.5.(4分)若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是()A.1:3 B.1:4 C.1:6 D.1:9【答案】D【解答】解:∵两个相似三角形的相似比是1:3,∴这两个相似三角形的面积比是12:32=1:9.故选:D.6.(4分)烷烃是一类由碳、氢元素组成的有机化合物质,如图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A.20 B.22 C.24 D.26【答案】B【解答】解:由所给图形可知,第1种化合物的分子结构模型中氢原子的个数为:4=1×2+2;第2种化合物的分子结构模型中氢原子的个数为:6=2×2+2;第3种化合物的分子结构模型中氢原子的个数为:8=3×2+2;第4种化合物的分子结构模型中氢原子的个数为:10=4×2+2;…,所以第n种化合物的分子结构模型中氢原子的个数为(2n+2)个,当n=10时,2n+2=22(个),即第10种化合物的分子结构模型中氢原子的个数为22个.故选:B.7.(4分)已知m,则实数m的范围是()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【答案】B【解答】解:m32,∵,∴34,即实数m的范围是3<m<4,故选:B.8.(4分)如图,在矩形ABCD中,分别以点A和C为圆心,AD长为半径画弧,两弧有且仅有一个公共点.若AD=4,则图中阴影部分的面积为()A.32﹣8π B.164π C.32﹣4π D.168π【答案】D【解答】解:连接AC.∵两弧有且仅有一个公共点,AD=4,∴AC=2AD=8,∴在Rt△ADC中,CD4,∴S矩形ABCD=AD•CD=16,∵两个扇形均为圆,而且它们的半径相等,∴两个扇形为圆,面积之和为S两个扇形πAD2=8π,∴S阴影=S矩形ABCD﹣S两个扇形=168π.故选:D.9.(4分)如图,在正方形ABCD的边CD上有一点E,连接AE,把AE绕点E逆时针旋转90°,得到FE,连接CF并延长与AB的延长线交于点G.则的值为()A. B. C. D.【答案】A【解答】解:过点F作FH⊥DC交DC延长线于点H,∴∠H=90°∵四边形ABCD是正方形,∴∠D=90°,AD=DC,∵AE绕点E逆时针旋转90°,得到FE,∴AE=FE,∠AEF=90°,∵∠DAE+∠AED=90°,∠HEF+∠AED=90°,∴∠DAE=∠HEF,在△ADE和△EHF中,,∴△ADE≌△EHF(AAS),∴AD=EH,DE=HF,∴EH=DC,∴DE=CH=HF,∴∠HCF=45°,∴∠G=45°,设CH=HF=DE=x,正方形边长为y,则CE=y﹣x,CF,CG,∴FG=CG﹣CF,∴,故选:A.10.(4分)已知整式M:anxn+an﹣1xn﹣1+⋯+a1x+a0,其中n,an﹣1,…,a0为自然数,an为正整数,且n+an+an﹣1+⋯+a1+a0=5.下列说法:①满足条件的整式M中有5个单项式;②不存在任何一个n,使得满足条件的整式M有且仅有3个;③满足条件的整式M共有16个.其中正确的个数是()A.0 B.1 C.2 D.3【答案】D【解答】解:∵n,an﹣1,…,a0为自然数,an为正整数,且n+an+an﹣1+⋯+a1+a0=5,∴0≤n≤4,当n=4时,则4+a4+a3+a2+a1+a0=5,∴a4=1,a3=a2=a1=a0=0,满足条件的整式有x4,当n=3时,则3+a3+a2+a1+a0=5,∴(a3,a2,a1,a0)=(2,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,1),满足条件的整式有:2x3,x3+x2,x3+x,x3+1,当n=2时,则2+a2+a1+a0=5,∴(a2,a1,a0)=(3,0,0),(2,1,0),(2,0,1),(1,2,0),(1,0,2),(1,1,1),满足条件的整式有:3x2,2x2+x,2x2+1,x2+2x,x2+2,x2+x+1;当n=1时,则1+a1+a0=5,∴(a1,a0)=(4,0),(3,1),(1,3),(2,2),满足条件的整式有:4x,3x+1,x+3,2x+2;当n=0时,0+a0=5,满足条件的整式有:5;∴满足条件的单项式有:x4,2x3,3x2,4x,5,故①符合题意;不存在任何一个n,使得满足条件的整式M有且只有3个,故②符合题意;满足条件的整式M共有1+4+6+4+1=16个,故③符合题意;故选:D.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上。11.(4分)计算:(π﹣3)0+()﹣1=3.【答案】见试题解答内容【解答】解:原式=1+2=3,故答案为:3.12.(4分)如果一个多边形的每一个外角都是40°,那么这个多边形的边数为9.【答案】9.【解答】解:∵9,∴这个多边形的边数为9,故答案为:9.13.(4分)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B的概率为.14.(4分)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元.该公司这两年缴税的年平均增长率是10%.【答案】10%.【解答】解:设该公司这两年缴税的年平均增长率是x,根据题意得:40(1+x)2=48.4,解得:x1=0.1=10%,x2=﹣2.1(不符合题意,舍去),∴该公司这两年缴税的年平均增长率是10%.故答案为:10%.15.(4分)如图,在△ABC中,延长AC至点D,使CD=CA,过点D作DE∥CB,且DE=DC,连接AE交BC于点F.若∠CAB=∠CFA,CF=1,则BF=3.【答案】3.【解答】解:∵CD=CA,DE∥CB,∴AF=EF,∴CF是△ADE的中位线,∴DE=2CF=2,∵DE=DC,∴AC=2CF=2,∵∠CAB=∠CFA,∠ACF=∠ACB,∴△CAF∽△CBA,∴AC:BC=CF:AC,∴2:BC=1:2,∴BC=4,∴BF=BC﹣FC=3.故答案为:3.16.(4分)若关于x的不等式组至少有2个整数解,且关于y的分式方程2的解为非负整数,则所有满足条件的整数a的值之和为16.【答案】16.【解答】解:,解不等式①,得x<4,解不等式②,得x,∴该不等式组的解集为x<4,∵该不等式组至少有2个整数解,∴2,解得a≤8;解分式方程2得,y,由题意得,当a=8时,y3;当a=6时,y2;当a=4时,y1(不合题意,舍去);当a=2时,y0,∴所有满足条件的整数a的值为8、6和2,∵8+6+2=16,∴所有满足条件的整数a的值之和为16,故答案为:16.17.(4分)如图,以AB为直径的⊙O与AC相切于点A,以AC为边作平行四边形ACDE,点D,E均在⊙O上,DE与AB交于点F,连接CE,与⊙O交于点G,连接DG.若AB=10,DE=8,则AF=8,DG=.【答案】8,.【解答】解:连接OE、OD、OG,过O点作OH⊥DG于H点,CE交AF于P点,如图,∵以AB为直径的⊙O与AC相切于点A,∴AB⊥AC,∵四边形ABCD为平行四边形,∴AC∥DE,∴AB⊥DE,∴DF=EFDE=4,∵AB=10,∴OA=OE=5,在Rt△OEF中,OF3,∴AF=OA+OF=5+3=8;∵DE∥AC,∴,∠DEG=∠PCA,∴PA8,在Rt△ACP中,PC,∵∠DOG=2∠DEG,∠DOG=2∠DOH,∴∠DEG=∠DOH,∴∠DOH=∠PCA,∴Rt△DOH∽Rt△PCA,∴DH:AO=OD:PC,即DH:5:,∴DH,∵OH⊥DG,∴DG=2DH.故答案为:8,.18.(4分)我们规定:若一个正整数A能写成m2﹣n,其中m与n都是两位数,且m与n的十位数字相同,个位数字之和为8,则称A为“方减数”,并把A分解成m2﹣n的过程,称为“方减分解”.例如:因为602=252﹣23,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成602=252﹣23的过程就是“方减分解”.按照这个规定,最小的“方减数”是82.把一个“方减数”A进行“方减分解”,即A=m2﹣n,将m放在n的左边组成一个新的四位数B,若B除以19余数为1,且2m+n=k2(k为整数),则满足条件的正整数A为4564.【答案】82,4564.【解答】解:①设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),由题意得:m2﹣n=(10a+b)2﹣(10a+8﹣b),∵1≤a≤9,∴要使“方减数”最小,需a=1,∴m=10+b,n=18﹣b,∴m2﹣n=(10+b)2﹣(18﹣b)=100+20b+b2﹣18+b=82+b2+21b,当b=0时,m2﹣n最小为82;②设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),∴B=1000a+100b+10a+8﹣b=1010a+99b+8,∵B除以19余数为1,∴1010a+99b+7能被19整除,∴53a+5b为整数,又2m+n=k2(k为整数),∴2(10a+b)+10a+8﹣b=30a+b+8是完全平方数,∵1≤a≤9,0≤b≤8,∴30a+b+8最小为49,最大为256,即7≤k≤16,设3a+4b+7=19t,t为正整数,则1≤t≤3,(Ⅰ)当t=1时,3a+4b=12,则b=3a,30a+b+8=30a+3a+8是完全平方数,又1≤a≤9,0≤b≤8,此时无整数解,(Ⅱ)当t=2时,3a+4b=31,则b,30a+b+8=30a8是完全平方数,又1≤a≤9,0≤b≤8,此时无整数解,(Ⅲ)当t=3时,3a+4b=50,则,是完全平方数,若a=6,b=8,则3a+4b+7=57=19×3,30×6+8+8=196=142,∴t=3,k=14,此时m=10a+8=68,n=10a+8﹣a=60,∴A=682﹣60=4564,故答案为:82,4564.三、解答题:(本大题8个小题,第19题8分,其余每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x﹣2y)+(x+y)2;(2)(1).【答案】(1)2x2+y2;(2).【解答】解:(1)原式=x2﹣2xy+x2+2xy+y2=2x2+y2;(2)原式•.20.(10分)为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x表示,共分成四组:A.60<x≤70;B.70<x≤80;C.80<x≤90;D.90<x≤100),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b众数a79根据以上信息,解答下列问题:(1)上述图表中a=86,b=87.5,m=40;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生、八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀(x>90)的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生安全知识竞赛成绩较好,理由见解答(答案不唯一);(3)320人.【解答】解:(1)在七年级20名学生的竞赛成绩中86出现的次数最多,故众数a=86;把八年级20名学生的竞赛成绩从小到大排列,排在中间的两个数分别是87,88,故中位数b87.5,m%=1﹣10%﹣20%40%,即m=40.故答案为:86,87.5,40;(2)八年级学生安全知识竞赛成绩较好,理由如下:因为两个年级成绩的平均数相同,但八年级的中位数高于七年级,所以得到八年级学生安全知识竞赛成绩较好(答案不唯一);(3)400500×40%=120+200=320(人),答:估计该校七、八年级参加此次安全知识竞赛成绩优秀(x>90)的学生人数大约是320人.21.(10分)在学习了矩形与菱形的相关知识后,智慧小组进行了更深入的研究,他们发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他们的想法与思路,完成以下作图和填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE(不写作法,保留作图痕迹).(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且EF⊥AC.求证:四边形AECF是菱形.证明:∵四边形ABCD是矩形,∴AB∥CD.∴①∠CFO=∠AEO,∠FCO=∠EAO.∵点O是AC的中点,∴②OC=OA.∴△CFO≌△AEO(AAS).∴③OF=OE.又∵OA=OC,∴四边形AECF是平行四边形.∵EF⊥AC,∴四边形AECF是菱形.进一步思考,如果四边形ABCD是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④四边形AECF是菱形..【答案】(1)见解析;(2)∠CFO=∠AEO,OC=OA,OF=OE,四边形AECF是菱形.【解答】(1)解:图形如图所示:(2)证明:∵四边形ABCD是矩形,∴AB∥CD.∴①∠CFO=∠AEO,∠FCO=∠EAO.∵点O是AC的中点,∴②OC=OA.∴△CFO≌△AEO(AAS).∴③OF=OE.又∵OA=OC,∴四边形AECF是平行四边形.∵EF⊥AC,∴四边形AECF是菱形.猜想的结论:④四边形AECF是菱形.故答案为:∠CFO=∠AEO,OC=OA,OF=OE,四边形AECF是菱形.22.(10分)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业有10条甲类生产线,20条乙类生产线;(2)还需投入1330万元资金更新生产线的设备.【解答】解:(1)设该企业有x条甲类生产线,y条乙类生产线,根据题意得;,解得:.答:该企业有10条甲类生产线,20条乙类生产线;(2)设购买更新1条乙类生产线的设备需投入m万元,则购买更新1条甲类生产线的设备需投入(m+5)万元,根据题意得:,解得:m=45,经检验,m=45是所列方程的解,且符合题意,∴10(m+5)+20m﹣70=10×(45+5)+20×45﹣70=1330.答:还需投入1330万元资金更新生产线的设备.23.(10分)如图1,在△ABC中,AB=6,BC=8,点P为AB上一点,AP=x,过点P作PQ∥BC交AC于点Q.点P,Q的距离为y1,△ABC的周长与△APQ的周长之比为y2.(1)请直接写出y1,y2分别关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出函数y1,y2的图象,并分别写出函数y1,y2的一条性质;(3)结合函数图象,请直接写出y1>y2时x的取值范围(近似值保留小数点后一位,误差不超过0.2).【答案】(1)y1x(0≤x≤6),y2(0<x≤6);(2)图象见解析过程;y1x的图象性质:在0≤x≤6,y随x的增大而增大,y2的图象性质:在0<x≤6,y随x的增大而减小;(3)2.1<x≤6.【解答】解:(1)∵PQ∥BC,∴△APQ∽△ABC,∴,,∴,y2,∴y1x,∵点P为AB上一点,∴y1x(0≤x≤6),y2(0<x≤6);(2)图象如图所示:y1x的图象性质:在0≤x≤6,y随x的增大而增大,y2的图象性质:在0<x≤6,y随x的增大而减小;(3)∵y1>y2,∴x,∴x2,∴x(舍去),x,∴2.1<x≤6.24.(10分)如图,甲、乙两艘货轮同时从A港出发,分别向B,D两港运送物资,最后到达A港正东方向的C港装运新的物资.甲货轮沿A港的东南方向航行40海里后到达B港,再沿北偏东60°方向航行一定距离到达C港.乙货轮沿A港的北偏东60°方向航行一定距离到达D港,再沿南偏东30°方向航行一定距离到达C港.(参考数据:1.41,1.73,2.45)(1)求A,C两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B,D两港的时间相同),哪艘货轮先到达C港?请通过计算说明.【答案】(1)A,C两港之间的距离约为77.2海里;(2)甲货轮先到达C港,理由见解答.【解答】解:(1)过点B作BE⊥AC,垂足为E,在Rt△ABE中,∠BAE=90°﹣45°=45°,AB=40海里,∴AE=AB•cos45°=4020(海里),BE=AB•sin45°=4020(海里),在Rt△BCE中,∠CBE=60°,∴CE=BE•tan60°=2020(海里),∴AC=AE+CE=202077.2(海里),∴A,C两港之间的距离约为77.2海里;(2)甲货轮先到达C港,理由:如图:由题意得:∠CDF=30°,DF∥AG,∴∠GAD=∠ADF=60°,∴∠ADC=∠ADF+∠CDF=90°,在Rt△ACD中,∠CAD=90°﹣∠GAD=30°,∴CDAC=(1010)海里,ADCD=(1030)海里,在Rt△BCE中,∠CBE=60°,BE=20海里,∴BC40(海里),∴甲货轮航行的路程=AB+BC=40+4096.4(海里),乙货轮航行的路程=AD+CD=103010102040105.4(海里),∵96.4海里<105.4海里,∴甲货轮先到达C港.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)经过点(﹣1,6),与y轴交于点C,与x轴交于A,B两点(A在B的左侧),连接AC,BC,tan∠CBA=4.(1)求抛物线的表达式;(2)点P是射线CA上方抛物线上的一动点,过点P作PE⊥x轴,垂足为E,交AC于点D.点M是线段DE上一动点,MN⊥y轴,垂足为N,点F为线段BC的中点,连接AM,NF.当线段PD长度取得最大值时,求AM+MN+NF的最小值;(3)将该抛物线沿射线CA方向平移,使得新抛物线经过(2)中线段PD长度取得最大值时的点D,且与直线AC相交于另一点K.点Q为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品退货工作管理制度
- 药库药品效期管理制度
- 营运公司安全管理制度
- 设备保养常规管理制度
- 设备备件出库管理制度
- 设备报废制度管理制度
- 设备检修通道管理制度
- 设备管理系统管理制度
- 设备项目安装管理制度
- 设计公司招待管理制度
- SB/T 10279-2017熏煮香肠
- GB/T 6185.2-20162型全金属六角锁紧螺母细牙
- GA/T 1394-2017信息安全技术运维安全管理产品安全技术要求
- IB教育中的PYP介绍专题培训课件
- 2022年桂林市卫生学校教师招聘笔试题库及答案解析
- 栏杆安装单元工程施工质量验收评定表完整
- 外墙清洗服务工程项目进度保障计划
- 2×300MW火电厂电气一次部分设计
- (全新)政府专职消防员考试题库(完整版)
- 岭南版 美术八年级下册 6色彩的表现 教案
- 2022年广东省公务员考试申论真题及参考答案
评论
0/150
提交评论