考点01函数的性质(文理)-2023年高考数学一轮复习小题多维练_第1页
考点01函数的性质(文理)-2023年高考数学一轮复习小题多维练_第2页
考点01函数的性质(文理)-2023年高考数学一轮复习小题多维练_第3页
考点01函数的性质(文理)-2023年高考数学一轮复习小题多维练_第4页
考点01函数的性质(文理)-2023年高考数学一轮复习小题多维练_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点01练函数的性质1.(2020·山东·高考真题)已知函数的定义域是,若对于任意两个不相等的实数,,总有成立,则函数一定是(

)A.奇函数 B.偶函数 C.增函数 D.减函数【答案】C【分析】利用函数单调性定义即可得到答案.【详解】对于任意两个不相等的实数,,总有成立,等价于对于任意两个不相等的实数,总有.所以函数一定是增函数.故选:C2.(2020·山东·高考真题)函数的定义域是(

)A. B. C. D.【答案】B【分析】根据题意得到,再解不等式组即可.【详解】由题知:,解得且.所以函数定义域为.故选:B3.(2022·江西萍乡·三模(理))已知定义域为的函数的图象关于点成中心对称,且当时,,若,则(

)A. B. C. D.【答案】C【分析】由已知结合函数对称性可求出,进而求得结果.【详解】解:因为定义域为的函数的图象关于点成中心对称,且当时,,若,则.故,即.故选:C.4.(2022·北京·高考真题)函数的定义域是_________.【答案】【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【详解】解:因为,所以,解得且,故函数的定义域为;故答案为:5.(2023·全国·高三专题练习)函数的图象与的图象关于轴对称,再把的图象向右平移1个单位长度后得到函数的图象,则________.【答案】【分析】根据函数的对称性及函数图象变换的原则即可求解.【详解】解:由题意可知,把的图象向右平移1个单位长度后得,故答案为:.6.(2022·全国·高考真题(理))函数在区间的图象大致为(

)A. B.C. D.【答案】A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令,则,所以为奇函数,排除BD;又当时,,所以,排除C.故选:A.7.(2022·青海·海东市第一中学模拟预测(文))已知函数,若是奇函数,则(

)A.1 B.2 C. D.【答案】A【分析】由是奇函数,可以得到关于a的方程组,解之即可得到a的值.【详解】由是奇函数,知,即,由x的任意性,得,得,解得.经检验符合题意.故选:A8.(2022·吉林吉林·模拟预测(文))定义在R上的函数满足,且函数为奇函数.当时,,则(

)A.-2 B.2 C.3 D.【答案】D【分析】由函数的对称性可以找到函数的周期,然后通过周期性和对称性即可求出的值.【详解】由可得,函数关于对称,函数为奇函数,所以,所以函数关于对称,则有,即,又,,的周期为4..故选:D.9.(2021·全国·高考真题)已知函数是偶函数,则______.【答案】1【分析】利用偶函数的定义可求参数的值.【详解】因为,故,因为为偶函数,故,时,整理得到,故,故答案为:110.(2022·河南安阳·模拟预测(文))已知函数,则a,b,c三者的大小关系是___________.【答案】##【分析】根据函数的奇偶性、单调性的性质,结合对数的单调性进行判断即可.【详解】显然有,因为,所以该函数是偶函数,当时,由函数的单调性的性质可知该函数单调递增,,,因为,所以,因为,所以,因此,所以有,即,故答案为:11.(2021·全国·高考真题)已知函数的定义域为,为偶函数,为奇函数,则(

)A. B. C. D.【答案】B【分析】推导出函数是以为周期的周期函数,由已知条件得出,结合已知条件可得出结论.【详解】因为函数为偶函数,则,可得,因为函数为奇函数,则,所以,,所以,,即,故函数是以为周期的周期函数,因为函数为奇函数,则,故,其它三个选项未知.故选:B.12.(2022·江西·模拟预测(理))已知函数的图象关于直线对称,对,都有恒成立,当时,若函数的图象和直线,有5个交点,则k的取值范围为(

)A. B.C. D.【答案】C【分析】根据已知可得是周期为4的偶函数,进而求得且,画出与的函数图象,数形结合法判断有5个交点情况下k的范围.【详解】由题设关于y轴对称,即为偶函数,又,则,即是周期为4的函数,若,则,故,所以且,又过定点,所以与的部分图象如下图示:当过时,;当过时,;由图知:时,和直线有5个交点.故选:C13.(2021·河南·睢县高级中学高三阶段练习(理))已知函数,设关于的不等式的解集为,若,则实数a的取值范围是(

)A. B. C. D.【答案】C【分析】根据条件分,和三种情况讨论,由,求出的取值范围.【详解】解:显然当时,,不满足条件;当时,易知,当时,,于是,而由,可得,即,所以也不满足条件,当时,函数,因为关于的不等式的解集为,若,则在上,函数的图象应在函数的图象的下方,如图所示,要使在上,函数的图象在函数的图象的下方,只要即可,即,化简可得,解得,所以的取值范围为.综上,的取值范围为.故选:C.14.(2019·浙江·高考真题)已知,函数,若存在,使得,则实数的最大值是____.【答案】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究入手,令,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得,使得令,则原不等式转化为存在,由折线函数,如图只需,即,即的最大值是【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.15.(2022·全国·高三专题练习)已知是定义在上的奇函数,当时,有下列结论:①函数在上单调递增;②函数的图象与直线有且仅有个不同的交点;③若关于的方程恰有个不相等的实数根,则这个实数根之和为;④记函数在上的最大值为,则数列的前项和为.其中所有正确结论的编号是___________.【答案】①④【分析】作出函数的图像,利用数形结合思想依次判断选项①②③,利用等比数列求和判断选项④;【详解】当时,,此时不满足方程;若,则,即若,则,即作出函数在时的图像,如图所示,对于①,由图可知,函数在上单调递增,由奇函数性质知,函数在上单调递增,故①正确;对于②,可知函数在时的图像与与直线有1个交点,结合函数的奇偶性知,的图象与直线有3个不同的交点,故②错误;对于③,设,则关于的方程等价于,解得:或当时,即对应一个交点为;方程恰有4个不同的根,可分为两种情况:(1),即对应3个交点,且,,此时4个实数根的和为8;(2),即对应3个交点,且,,此时4个实数根的和为4,故③错误;对于④,函数在上的最大值为,即,由函数的解析式及性质可知,数列是首项为1,公比为的等比数列,则数列的前项和为,故④正确.故答案为:①④【点睛】方法点睛:已知函数有零点(方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论