版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届河北省保定市第七中学高三下学期第三次综合练习(三模)数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是()A.或 B.C.或 D.2.双曲线的渐近线方程是()A. B. C. D.3.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变4.集合的真子集的个数是()A. B. C. D.5.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.6.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.7.设全集,集合,,则()A. B. C. D.8.已知集合,则()A. B.C. D.9.已知数列为等差数列,且,则的值为()A. B. C. D.10.设集合(为实数集),,,则()A. B. C. D.11.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.212.已知随机变量服从正态分布,,()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中的系数为,则_______.14.已知实数满足则点构成的区域的面积为____,的最大值为_________15.设的内角的对边分别为,,.若,,,则_____________16.已知数列为等比数列,,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.18.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.19.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.20.(12分)已知函数(),不等式的解集为.(1)求的值;(2)若,,,且,求的最大值.21.(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.22.(10分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.【详解】由得,.令,则,令,解得,所以当时,,则在内单调递增;当时,,则在内单调递减;所以在处取得极大值,即最大值为,则的图象如下图所示:由有且仅有一个不动点,可得得或,解得或.故选:C【点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.2.C【解析】
根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.3.D【解析】
由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题4.C【解析】
根据含有个元素的集合,有个子集,有个真子集,计算可得;【详解】解:集合含有个元素,则集合的真子集有(个),故选:C【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有个元素的集合,有个子集,有个真子集,属于基础题.5.C【解析】
根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.6.B【解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.7.D【解析】
求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于故集合或故集合故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.8.C【解析】
由题意和交集的运算直接求出.【详解】∵集合,∴.故选:C.【点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.9.B【解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.10.A【解析】
根据集合交集与补集运算,即可求得.【详解】集合,,所以所以故选:A【点睛】本题考查了集合交集与补集的混合运算,属于基础题.11.B【解析】
根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.12.B【解析】
利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.2【解析】
首先求出的展开项中的系数,然后根据系数为即可求出的取值.【详解】由题知,当时有,解得.故答案为:.【点睛】本题主要考查了二项式展开项的系数,属于简单题.14.811【解析】
画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.15.或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角.用正弦定理;,则;可得.考点:运用正弦定理解三角形.(注意多解的情况判断)16.81【解析】
设数列的公比为,利用等比数列通项公式求出,代入等比数列通项公式即可求解.【详解】设数列的公比为,由题意知,因为,由等比数列通项公式可得,,解得,由等比数列通项公式可得,.故答案为:【点睛】本题考查等比数列通项公式;考查运算求解能力;属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)根据,,可得平面,故而平面平面.(Ⅱ)过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算.【详解】解:(Ⅰ)因为,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)过作于,则由平面,且平面知,所以平面,从而是直线与平面所成角.因为,,,所以,从而.【点睛】本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题.18.(1)(2)证明见解析【解析】
(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.(2),,因为,,所以要证,只需证,即证,因为,所以只要证,即证,即证,因为,所以只需证,因为,所以成立,所以.【点睛】本小题主要考查绝对值不等式的解法,考查分析法证明不等式,考查基本不等式的运用,属于中档题.19.(1)元;(2)32家;(3)分布列见解析;【解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,,.,,所以的分布列为数学期望【点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.20.(1)(2)32【解析】
利用绝对值不等式的解法求出不等式的解集,得到关于的方程,求出的值即可;由知可得,,利用三个正数的基本不等式,构造和是定值即可求出的最大值.【详解】(1)∵,,所以不等式的解集为,即为不等式的解集为,∴的解集为,即不等式的解集为,化简可得,不等式的解集为,所以,即.(2)∵,∴.又∵,,,∴,当且仅当,等号成立,即,,时,等号成立,∴的最大值为32.【点睛】本题主要考查含有两个绝对值不等式的解法和三个正数的基本不等式的灵活运用;其中利用构造出和为定值即为定值是求解本题的关键;基本不等式取最值的条件:一正二定三相等是本题的易错点;属于中档题.21.(1);(2)【解析】
(1)由,可求出的值,进而可求得的解析式;(2)分别求得和的值域,再结合两个函数的值域间的关系可求出的取值范围.【详解】(1)因为,所以,解得,故.(2)因为,所以,所以,则,图象的对称轴是.因为,所以,则,解得,故的取值范围是.【点睛】本题考查了三角函数的恒等变换,考查了二次函数及三角函数值域的求法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北大病理生理学课件
- 《流通功能与机构》课件
- 简约课件模板
- 《GMP专业知识培训》课件
- 动画课件教学
- 2024年新高一数学初升高衔接《函数的应用(一)》含答案解析
- 玩具显微镜产业运行及前景预测报告
- 肖像打印的照片产品入市调查研究报告
- 点火用电池产业运行及前景预测报告
- 汽车用发动机产业深度调研及未来发展现状趋势
- 2024-2030年中国非物质文化遗产保护行业开发模式分析规划研究报告
- 【初中化学】二氧化碳的实验室制取课件-2024-2025学年九年级化学人教版上册
- 绿化设计合作协议
- 新修订《中华人民共和国保守国家秘密法》竞赛题库
- 学校提高《规范书写水平、传承汉字文化》活动方案3篇
- 2024年湖北省公务员考试《行测》真题及答案解析
- 2024-2030年中国动漫产业园行业发展现状及投资前景规划展望报告
- 第4章《一元一次方程》-2024-2025学年七年级数学上册单元测试卷(苏科版2024新教材)
- 浙江省杭州市采荷中学2024-2025学年七年级上学期期中考试英语试题
- DB3502T 148-2024中小型水库生产运行标准化管理规程
- 《供应链管理》期末考试复习题库(含答案)
评论
0/150
提交评论