2025年中考数学二轮复习《函数实际问题》专题巩固练习(一)(含答案)_第1页
2025年中考数学二轮复习《函数实际问题》专题巩固练习(一)(含答案)_第2页
2025年中考数学二轮复习《函数实际问题》专题巩固练习(一)(含答案)_第3页
2025年中考数学二轮复习《函数实际问题》专题巩固练习(一)(含答案)_第4页
2025年中考数学二轮复习《函数实际问题》专题巩固练习(一)(含答案)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年中考数学二轮复习《函数实际问题》专题巩固练习(一)一 、选择题LISTNUMOutlineDefault\l3体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=eq\f(2,3)x+eq\f(22,3)B.y=﹣x+9与y=eq\f(2,3)x+eq\f(22,3)C.y=﹣x+9与y=﹣eq\f(2,3)x+eq\f(22,3)D.y=x+9与y=﹣eq\f(2,3)x+eq\f(22,3)LISTNUMOutlineDefault\l3为了更好保护水资源,造福人类.某工厂计划建一个容积V(m3)一定的圆柱状污水处理池,池的底面积S(m2)关于深度h(m)的函数图象大致是()LISTNUMOutlineDefault\l3如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为()A.y=5-xB.y=5-x2C.y=25-xD.y=25-x2LISTNUMOutlineDefault\l3某移动通讯公司提供了A、B两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误的是().A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超过200分,则B方案比A方案便宜C.若通讯费用为60元,则B方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分LISTNUMOutlineDefault\l3在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m3)是体积V(m3)的反比例函数,它的图象如图所示.当V=10m3时,气体的密度是()A.5kg/m3B.2kg/m3C.100kg/m3D.1kg/m3二 、填空题LISTNUMOutlineDefault\l3如图是某汽车行驶的路程s(km)与时间t(m/n)的函数关系图,观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是km/min;(2)汽车在中途停了min;(3)当16≤t≤30时,s与t的函数关系式:.LISTNUMOutlineDefault\l3某学校食堂有1500kg的煤炭需运出,这些煤炭运出的天数y与平均每天运出的质量x(单位:kg)之间的函数关系式为____________.LISTNUMOutlineDefault\l3某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为.LISTNUMOutlineDefault\l3出售某种手工艺品,若每个获利x元,一天可售出(8﹣x)个,则当x=_________元,一天出售该种手工艺品的总利润y最大.三 、解答题LISTNUMOutlineDefault\l3A、B两地相距150km,甲、乙两人先后从A地出发向B地行驶,甲骑摩托车匀速行驶,乙开汽车且途中速度只改变一次,如图表示的是甲、乙两人之间的距离S关于时间t的函数图象(点F的实际意义是乙开汽车到达B地),请根据图象解答下列问题:(1)求出甲的速度;(2)求出乙前后两次的速度,并求出点E的坐标;(3)当甲、乙两人相距10km时,求t的值.LISTNUMOutlineDefault\l3制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?LISTNUMOutlineDefault\l3一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.(1)建立适当的平面直角坐标系,求抛物线的表达式;(2)现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.LISTNUMOutlineDefault\l3某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.(1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:型号A型B型购进数量(盏)[x购买费用(元)(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?LISTNUMOutlineDefault\l3为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1=eq\b\lc\{(\a\vs4\al\co1(k1x(0≤x<600),,k2x+b(600≤x≤1000),))其图象如图所示.栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

LISTNUMOutlineDefault\l3\s0答案LISTNUMOutlineDefault\l3CLISTNUMOutlineDefault\l3CLISTNUMOutlineDefault\l3DLISTNUMOutlineDefault\l3DLISTNUMOutlineDefault\l3DLISTNUMOutlineDefault\l3答案为:eq\f(4,3),7,S=2t﹣20.LISTNUMOutlineDefault\l3答案为:y=eq\f(1500,x).LISTNUMOutlineDefault\l3答案为:y=200000(x+1)2LISTNUMOutlineDefault\l3答案为:4.LISTNUMOutlineDefault\l3解:(1)由图可得,甲的速度为:60÷2=30km/h;(2)设乙刚开始的速度为akm/h,30×2.5﹣35=(2.5﹣2)a,解得,a=80,设乙变速后的速度为bkm/h,150﹣0.5×80=(4.5﹣2.5)b,解得,b=55,∵35÷(55﹣30)=1.4,∴点E的坐标为(3.9,0),即乙前后两次的速度分别是80km/h、55km/h,点E的坐标是(3.9,0);(3)由题意可得,t=2.5+(35﹣10)÷(55﹣30)=3.5或t=3.9+10÷(55﹣30)=4.3,即t的值是3.5h或4.3h.LISTNUMOutlineDefault\l3解:(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=eq\f(k,x)(k≠0),由题意得60=5k-1,解得k=300,则停止加热进行操作时y与x的函数关系式为y=300x-1(x≥5);(2)把y=15代入y=300x-1,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.LISTNUMOutlineDefault\l3解:(1)以AB所在直线为x轴,以抛物线的对称轴为y轴建立平面直角坐标系,如图所示.∴A(﹣4,0),B(4,0),C(0,6).设这条抛物线的表达式为y=a(x﹣4)(x+4).∵抛物线经过点C,∴﹣16a=6.∴a=﹣eq\f(3,8)∴抛物线的表达式为y=﹣eq\f(3,8)x2+6,(﹣4≤x≤4).(2)当x=1时,y=,∵4.4+0.5=4.9<,∴这辆货车能安全通过这条隧道.LISTNUMOutlineDefault\l3解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得,,解得,答:应购进A型台灯75盏,B型台灯25盏,故答案为:30x;y;50y;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.LISTNUMOutlineDefault\l3解:(1)k1=30,k2=20,b=6000.(2)当0≤x<600时,W=30x+(-0.01x2-20x+30000)=-0.01x2+10x+30000=-0.01(x-500)2+32500,∵-0.01<0,∴当x=500时,W取最大值为32500元.当600≤x≤1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论