人教版四年级上册数学思维训练讲义-第十讲统筹规划(含答案)_第1页
人教版四年级上册数学思维训练讲义-第十讲统筹规划(含答案)_第2页
人教版四年级上册数学思维训练讲义-第十讲统筹规划(含答案)_第3页
人教版四年级上册数学思维训练讲义-第十讲统筹规划(含答案)_第4页
人教版四年级上册数学思维训练讲义-第十讲统筹规划(含答案)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十讲统筹规划第一部分:趣味数学数学的魅力-----趣味性数学的魅力-----趣味性数学是思维的体操。思维触角的每一次延伸,都开辟了一个新的天地。数学的趣味美,体现于它奇妙无穷的变幻,而这种变幻是其他学科望尘莫及的。揭开了隐藏于数学迷宫的奇异数、对称数、完全数、魔术数??的面纱,令人惊诧;观看了数字波涛、数字漩涡??令人感叹!一个个数字,非但毫不枯燥,却生机勃勃,鲜活亮丽!根据法则、规律,运用严密的逻辑推理演化出的各种神机妙算、数学游戏,是数学趣味性的集中体现,显示了数学思维的出神入化!各种变化多端的奇妙图形,赏心悦目;各种扑朔迷离的符形数谜,牵魂系梦;图形式题的巧解妙算,启人心扉,令人赞叹!魔幻迷题,运用科学思维,"弹子会告密"、"卡片能说话",能知你姓氏,知你出生年月,甚至能窥见你脑中所想,心中所思??真是奇趣玄妙,鬼斧神工。?面对这样一些饶有兴味的问题,怎能说数学枯燥乏味呢?第二部分:奥数小练【例题1】面值是2元、5元的人民币共27张,全计99元。面值是2元、5元的人民币各有多少张?【思路导航】这道题类似于“鸡兔同笼”问题。假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。练习1:1.孙佳有2分、5分硬币共40枚,一共是1元7角。两种硬币各有多少枚?2.50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。问大船和小船各几只?小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。小明共得60分,他猜对了几道?【例题2】一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。每辆大车比小车多装4吨,这批水泥有多少吨?【思路道路】求出大车每辆各装多少吨,是解题关键。如果用36辆小车来运,则剩4×36=144吨,需45-36=9辆小车来运,这样可以求出每辆小车的装载量是144÷9=16吨,所以,这批水泥共有16×45=720吨。练习2:1.一批货物用大卡车装要16辆,如果用小卡车装要48辆。已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2.有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3.一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?【例题3】用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?

【思路导航】一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?

我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。练习3:1.甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。2.甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?

3.小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。

4.有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【例题4】今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有多少只?【思路导航】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。所以兔有24÷2=12只,鸡有35-12=23只。练习4:(1)鸡与兔共有30只,共有脚70只。鸡与兔各有多少只?(2)鸡与兔共有20只,共有脚50只。鸡与兔各有多少只?(3)鸡与兔共有100只,鸡脚比兔脚多80只。鸡与兔各有多少只?【例题5】某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元。其中40元和50元的张数相等,每种票各售出多少张?【思路导航】因为“40元和50元的张数相等”,所以可以把40元和50元的门票都看作45元的门票,假设这200张门票都是45元的,应收入45×200=9000元,比实际多收入9000-7800=1200元,这是因为把30元的门票都当作45元来计算了。因此30元的门票有1200÷(45-30)=80张,40元和50元的门票各有(200-80)÷2=60张。练习5:1.某场球赛售出40元、30元、50元的门票共400张,收入15600元。其中40元和50元的张数相等,每种门票各售出多少张?2.数学测试卷有20道题,做对一题得7分,做错一题倒扣3分,不做得0分。红红得了100分,她几道题没做?3.有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角。买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?第三部分:数学史话打电话打电话每次当你拿起电话听筒打电话,发传真,或发调制解调器信息时,你就进人了非常复杂的巨大网络。覆盖全球的通信网是惊人的。很难想像每天有多少次电话在这网络上打来打去。一个系统被不同国家和水域的不同系统“分割”,它是如何运行的呢?一次电话是如何通向在你的城市、你的国家或另一国家中的某个人的呢?在早期电话史上,打电话的人拿起电话听筒,摇动曲柄,与接线员联系。一位本地接线员的声音从本地交换台来到线上,说“请报号码”,然后他把你同你试图通话的对方连接起来。如今,这一过程由于有了各种不同的转换和送达通话的方法而如雨后春笋般地迅速发展。包含着线性规划的各种复杂类型,以及有关的二进制和二进编码的数学,已脱离了潜在的不稳固地位而成为有意义的东西。你的声音是如何行进的?你的声音产生声波,在听筒中转换成电信号。今天,这些电脉冲可以用许多不同的方法传递和转换。它们可以变成激光信号,然后沿光纤电缆传递;它们可以转换成无线电信号,然后利用无线电或微波线路在一个国家内从一座塔传送到另一座塔;或者它们可以仍旧作为电信号沿着电话线传送。在美国,大部分电话都是由自动交换系统接通的。现在电子交换系统是最快的。这系统有一个程序,这程序包含电话运行的所有方面所需的信息,并且时刻在了解哪些电话正在使用,哪些通道是可用的。通话可以由不同频率的电流传送,或转换成数字信号。这两种方法都使多重通话可以沿同一些电线传送。最新式的系统把通话转换成数字信号,然后再用二进制数列编码。于是各个通话可以沿着线路以特定的次序“同时’’行进,直到它们被译码而到达各自的目的地。打电话时,电话系统选择最佳通话途径,并发出一连串指令,以接通线路。整个过程只需几分之一秒。通话线路最好是直接通向对方的──从节省距离和时间的观点看来,这是人们所期望的。但是如果直接线路正在为别的通话服务,新的通话就必须沿其他线路中最好的一条进行。这正是需要用到线性规划的地方。我们把电话线路问题当作一个有几百万个面的复杂几何立体形来看。每个顶点代表一个可能的解。问题是要找出最优解,而不必计算每一个解。1947年。数学家乔治B.丹齐克研究出了求解复杂线性规射问题的单纯形法。单纯形法实质上是沿着那立体的棱进行,依次检查每一隅角,并总是向着最优解前进。当可能解的数目不超过15000~20000时,这方法能有效地求得解答。1984年,数学家纳伦德拉.卡马卡发现一种方法,它使求解很麻烦的线性规划问题例如长距离电话最优通话线路问题所需的时间大为缩短。卡马卡算法采取了一条通过那立体内部的捷径。在选择了一个任意内点之后,这算法使整个结构变形.以把问题改造得使所选择的点正好在那立体的中心。下一步是朝着最优解的方向找到一个新的点,再将结构变形,又使新点位于中心。必须进行变形,否则那些看来能给出最优改进的方向都是虚假的。这些重复的变换以射影几何的概念为基础,很快便能得到最优解。今天,古老的电话敬语“请报号码”具有双重的意义。曾经是简单的拿起电话听筒打电话的过程,现在却要使一个依着数学的庞大而复杂的网络运作起来。参考答案:练习1:1.1元7角=170分

5分的有:

(170-2×40)÷(5-2)

=90÷3

=30(枚)

2分的有:40-30=10(枚)

答:2分的有10枚,5分的有30枚。2.大船:(50-11×4)÷(6-4)=3(条)小船:11-3=8(条)

3.错题的数目:(20×5-60)÷(5+3)=5(道)猜对的数目:20-5=15(道)练习2:1.48÷16=3小车每辆:

4÷(3-1)=4÷2=2(吨)一共:

48x2=96(吨)

2.50×3÷(80-50)×80=400吨3.30×3=90(吨)90÷5=18(吨)30×(18+3)=630(吨)35×18=630(吨)练习3:1.分析:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。

解:应按丙,乙,甲,丁顺序用水。

丙等待时间为0,用水时间1分钟,总计1分钟

乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟

甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟

丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,

总时间为1+3+6+16=26分钟。2.分析:大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。所以花费的总时间为:2+1+10+2+2=17分钟。

解:2+1+10+2+2=17分钟3.分析:要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。

解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟

然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟

最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。

总共用时(2+1)+(6+2)+2=13分钟。4.分析:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)练习4:1.假设全是鸡,则兔有:

(70-30×2)÷(4-2)

=10÷2,

=5(只)

鸡有:30-5=25(只)

答:鸡有25只,兔有5只。2.(20×4-50)÷(4-2)

=30÷2

=15(只)

20-15=5(只)

答:兔子5只,鸡15只。3.一只鸡2只脚,一只兔子4只脚

鸡的脚比兔的脚多80只,就是说鸡的只数是兔的两倍多40只。

鸡兔共100只,(100-40)÷(1+2)=20,100-20=80,

兔子20只

鸡80只练习5:1.设40元的门票x张,则50元的门票x张,30元的门票400-x-x=400-2x张,由题意得:

30×(400-2x)+40x+50x=15600

12000-60x+40x+50x=15600

30x=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论