人教A版(新教材)高中数学选择性必修第三册学案:7 1 2 全概率公式_第1页
人教A版(新教材)高中数学选择性必修第三册学案:7 1 2 全概率公式_第2页
人教A版(新教材)高中数学选择性必修第三册学案:7 1 2 全概率公式_第3页
人教A版(新教材)高中数学选择性必修第三册学案:7 1 2 全概率公式_第4页
人教A版(新教材)高中数学选择性必修第三册学案:7 1 2 全概率公式_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教A版(新教材)高中数学选择性必修第三册PAGEPAGE17.1.2全概率公式学习目标1.结合古典概型,会利用全概率公式计算概率.2.了解贝叶斯公式(不作考试要求).知识点一全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=eq\i\su(i=1,n,P)(Ai)P(B|Ai),我们称该公式为全概率公式.*知识点二贝叶斯公式设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(Ai|B)=eq\f(PAiPB|Ai,PB)=eq\f(PAiPB|Ai,\i\su(k=1,n,P)AkPB|Ak),i=1,2,…,n.1.若P(A)>0,P(eq\x\to(A))>0,则P(B)=P(A)P(B|A)+P(eq\x\to(A))P(B|eq\x\to(A)).(√)2.若A1,A2,A3互斥且P(A1)>0,P(A2)>0,P(A3)>0,则P(B)=eq\i\su(i=1,3,P)(Ai)P(B|Ai).(×)一、两个事件的全概率问题例1某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行民意调查.参加活动的甲、乙两班的人数之比为5∶3,其中甲班中女生占eq\f(3,5),乙班中女生占eq\f(1,3).求该社区居民遇到一位进行民意调查的同学恰好是女生的概率.解如果用A1,A2分别表示居民所遇到的一位同学是甲班的与乙班的事件,B表示是女生的事件,则Ω=A1∪A2,且A1,A2互斥,B⊆Ω,由题意可知,P(A1)=eq\f(5,8),P(A2)=eq\f(3,8),且P(B|A1)=eq\f(3,5),P(B|A2)=eq\f(1,3).由全概率公式可知P(B)=P(A1)P(B|A1)+P(A2)·P(B|A2)=eq\f(5,8)×eq\f(3,5)+eq\f(3,8)×eq\f(1,3)=eq\f(1,2).反思感悟两个事件的全概率问题求解策略(1)拆分:将样本空间拆分成互斥的两部分如A1,A2(或A与eq\x\to(A)).(2)计算:利用乘法公式计算每一部分的概率.(3)求和:所求事件的概率P(B)=P(A1)P(B|A1)+P(A2)P(B|A2).跟踪训练1某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂每箱装100个,废品率为0.06,乙厂每箱装120个,废品率为0.05,求:(1)任取一箱,从中任取一个为废品的概率;(2)若将所有产品开箱混放,求任取一个为废品的概率.解记事件A,B分别为甲、乙两厂的产品,事件C为废品,则Ω=A∪B,且A,B互斥,(1)由题意,得P(A)=eq\f(30,50)=eq\f(3,5),P(B)=eq\f(20,50)=eq\f(2,5),P(C|A)=0.06,P(C|B)=0.05,由全概率公式,得P(C)=P(A)P(C|A)+P(B)P(C|B)=eq\f(7,125).(2)P(A)=eq\f(30×100,30×100+20×120)=eq\f(5,9),P(B)=eq\f(20×120,30×100+20×120)=eq\f(4,9),P(C|A)=0.06,P(C|B)=0.05,由全概率公式,得P(C)=P(A)P(C|A)+P(B)P(C|B)=eq\f(5,9)×eq\f(6,100)+eq\f(4,9)×eq\f(5,100)=eq\f(1,18).二、多个事件的全概率问题例2假设某市场供应的智能手机中,市场占有率和优质率的信息如下表所示:品牌甲乙其他市场占有率50%30%20%优质率95%90%70%在该市场中任意买一部智能手机,求买到的是优质品的概率.解用A1,A2,A3分别表示买到的智能手机为甲品牌、乙品牌、其他品牌的事件,B表示买到的是优质品的事件,则Ω=A1∪A2∪A3,且A1,A2,A3两两互斥,依据已知可得P(A1)=50%,P(A2)=30%,P(A3)=20%,且P(B|A1)=95%,P(B|A2)=90%,P(B|A3)=70%,因此,由全概率公式有P(B)=P(A1)P(B|A1)+P(A2)·P(B|A2)+P(A3)P(B|A3)=50%×95%+30%×90%+20%×70%=88.5%.反思感悟“化整为零”求多事件的全概率问题(1)如图,P(B)=eq\i\su(i=1,3,P)(Ai)P(B|Ai).(2)已知事件B的发生有各种可能的情形Ai(i=1,2,…,n),事件B发生的可能性,就是各种可能情形Ai发生的可能性与已知在Ai发生的条件下事件B发生的可能性的乘积之和.跟踪训练2甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解(1)从甲箱中任取2个产品的事件数为Ceq\o\al(2,8)=eq\f(8×7,2)=28,这2个产品都是次品的事件数为Ceq\o\al(2,3)=3,∴这2个产品都是次品的概率为eq\f(3,28).(2)设事件A为“从乙箱中取出的一个产品是正品”,事件B1为“从甲箱中取出2个产品都是正品”,事件B2为“从甲箱中取出1个正品1个次品”,事件B3为“从甲箱中取出2个产品都是次品”,则事件B1、事件B2、事件B3彼此互斥.P(B1)=eq\f(C\o\al(2,5),C\o\al(2,8))=eq\f(5,14),P(B2)=eq\f(C\o\al(1,5)C\o\al(1,3),C\o\al(2,8))=eq\f(15,28),P(B3)=eq\f(C\o\al(2,3),C\o\al(2,8))=eq\f(3,28),P(A|B1)=eq\f(2,3),P(A|B2)=eq\f(5,9),P(A|B3)=eq\f(4,9),∴P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)·P(A|B3)=eq\f(5,14)×eq\f(2,3)+eq\f(15,28)×eq\f(5,9)+eq\f(3,28)×eq\f(4,9)=eq\f(7,12).三、条件概率在生产生活中的应用例3设某批产品中,甲、乙、丙三厂生产的产品分别占45%,35%,20%,各厂的产品的次品率分别为4%,2%,5%,现从中任取一件.(1)求取到的是次品的概率;(2)经检验发现取到的产品为次品,求该产品是甲厂生产的概率.解记事件A1=“该产品为甲厂生产的”,事件A2=“该产品为乙厂生产的”,事件A3=“该产品为丙厂生产的”,事件B=“该产品是次品”.则Ω=A1∪A2∪A3,且A1,A2,A3两两互斥,由题设,知P(A1)=45%,P(A2)=35%,P(A3)=20%,P(B|A1)=4%,P(B|A2)=2%,P(B|A3)=5%.(1)由全概率公式得P(B)=eq\i\su(i=1,3,P)(Ai)P(B|Ai)=3.5%.(2)由贝叶斯公式(或条件概率定义),得P(A1|B)=eq\f(PA1B,PB)=eq\f(PA1PB|A1,PB)=eq\f(18,35).反思感悟条件概率的内含(1)公式P(A1|B)=eq\f(PA1B,PB)=eq\f(PA1PB|A1,PB)反映了P(A1B),P(A1),P(B),P(A1|B),P(B|A1)之间的互化关系.(2)P(A1)称为先验概率,P(A1|B)称为后验概率,其反映了事情A1发生的可能在各种可能原因中的比重.跟踪训练3同一种产品由甲、乙、丙三个厂供应.由长期的经验知,三家的正品率分别为0.95,0.90,0.80,三家产品数所占比例为2∶3∶5,混合在一起.(1)从中任取一件,求此产品为正品的概率;(2)现取到一件产品为正品,问它是由甲、乙、丙三个厂中哪个厂生产的可能性大?解设事件A表示取到的产品为正品,B1,B2,B3分别表示产品由甲、乙、丙厂生产.则Ω=B1∪B2∪B3,且B1,B2,B3两两互斥,由已知P(B1)=0.2,P(B2)=0.3,P(B3)=0.5,P(A|B1)=0.95,P(A|B2)=0.9,P(A|B3)=0.8.(1)由全概率公式得P(A)=eq\i\su(i=1,3,P)(Bi)P(A|Bi)=0.2×0.95+0.3×0.9+0.5×0.8=0.86.(2)由贝叶斯公式得P(B1|A)=eq\f(PB1PA|B1,PA)=eq\f(0.2×0.95,0.86)=eq\f(19,86),P(B2|A)=eq\f(PB2PA|B2,PA)=eq\f(0.3×0.9,0.86)=eq\f(27,86),P(B3|A)=eq\f(PB3PA|B3,PA)=eq\f(0.5×0.8,0.86)=eq\f(40,86).由以上3个数作比较,可知这件产品由丙厂生产的可能性最大,由甲厂生产的可能性最小.1.一袋中装有10个球,其中3个黑球、7个白球,从中先后随意各取一球(不放回),则第二次取到的是黑球的概率为()A.eq\f(2,9)B.eq\f(3,9)C.eq\f(3,10)D.eq\f(7,10)〖答案〗C〖解析〗记事件A,B分别表示第一、二次取到的是黑球,则P(B)=P(AB)+P(eq\x\to(A)B)=P(A)P(B|A)+P(eq\x\to(A))P(B|eq\x\to(A)),由题设易知P(A)=eq\f(3,10),P(eq\x\to(A))=eq\f(7,10),P(B|A)=eq\f(2,9),P(B|eq\x\to(A))=eq\f(3,9),于是P(B)=eq\f(3,10)×eq\f(2,9)+eq\f(7,10)×eq\f(3,9)=eq\f(3,10).2.两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,加工出来的零件放在一起,现已知第一台加工的零件比第二台加工的零件多一倍,则任意取出一个零件是合格品的概率是()A.eq\f(2,75)B.eq\f(7,300)C.eq\f(73,75)D.eq\f(973,1000)〖答案〗C〖解析〗设Ai=“任意取出一个零件是第i台机床生产的”,i=1,2,B=“任意取出一个零件是合格品”.则Ω=A1∪A2,且A1,A2互斥,∴P(B)=eq\i\su(i=1,2,P)(Ai)P(B|Ai)=eq\f(2,3)(1-0.03)+eq\f(1,3)(1-0.02)=eq\f(292,300)=eq\f(73,75).3.有一批同一型号的产品,已知其中由一厂生产的占30%,二厂生产的占50%,三厂生产的占20%.又知这三个厂的产品次品率分别为2%,1%,1%,则从这批产品中任取一件是次品的概率是()A.0.013B.0.04C.0.002D.0.003〖答案〗A〖解析〗设事件A为“任取一件为次品”,事件Bi为“任取一件为i厂的产品”,i=1,2,3,则Ω=B1∪B2∪B3,且B1,B2,B3两两互斥,易知P(B1)=0.3,P(B2)=0.5,P(B3)=0.2,P(A|B1)=0.02,P(A|B2)=0.01,P(A|B3)=0.01.∴P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)·P(B3)=0.02×0.3+0.01×0.5+0.01×0.2=0.013.4.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,则该球是白球的概率为________.〖答案〗eq\f(13,25)〖解析〗设A=“从乙袋中取出的是白球”,Bi=“从甲袋中取出的两球恰有i个白球”,i=0,1,2.由全概率公式P(A)=P(B0)P(A|B0)+P(B1)P(A|B1)+P(B2)·P(A|B2)=eq\f(C\o\al(2,2),C\o\al(2,5))·eq\f(4,10)+eq\f(C\o\al(1,3)C\o\al(1,2),C\o\al(2,5))·eq\f(1,2)+eq\f(C\o\al(2,3),C\o\al(2,5))·eq\f(6,10)=eq\f(13,25).5.一项血液化验用来鉴别是否患有某种疾病,在患有此种疾病的人群中通过化验有95%的人呈阳性反应,而健康的人通过化验也会有1%的人呈阳性反应,某地区此种病患者占

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论