版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
年重庆市中考数学试卷(a卷)姓名:__________班级:__________考号:__________题号一二三总分评分一、选择题1.在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.下列图形中是轴对称图形的是()A. B. C. D.3.计算x6÷x2正确的结果是()A.3 B.x3 C.x4 D.x84.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查 B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查 D.对某校九年级3班学生肺活量情况的调查5.估计10+1的值应在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间6.若x=﹣13A.﹣6 B.0 C.2 D.67.要使分式4x−3A.x>3 B.x=3 C.x<3 D.x≠38.若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:99.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是()A.2−π4 B.32−π410.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109 第10题图 第11题图11.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米 B.6.3米 C.7.1米 D.9.2米12.若数a使关于x的分式方程2x−1+a1−x=4的解为正数,且使关于y的不等式组A.10 B.12 C.14 D.16二、填空题13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.计算:|﹣3|+(﹣1)2=.15.如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=. 第15题图 第16题图 第17题图16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.17.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题19.如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.20.重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21.计算:(1)x(x﹣2y)﹣(x+y)2 (2)(3a+2+a﹣2)÷a22.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=kx(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=22(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=32,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(s)F(t)26.如图,在平面直角坐标系中,抛物线y=33x2﹣233(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=33x2﹣233
答案解析部分1.【答案】B【解析】【解答】解:∵﹣4<﹣3<0<2,∴四个实数中,最大的实数是2.故选:B.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.2.【答案】C【解析】【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【分析】根据轴对称图形的概念求解.3.【答案】C【解析】【解答】解:x6÷x2=x4.故选:C.【分析】直接利用同底数幂的除法运算法则计算得出答案.4.【答案】D【解析】【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.5.【答案】B【解析】【解答】解:∵3<10<4,∴4<10+1<5.故选:B.【分析】首先得出10的取值范围,进而得出答案.6.【答案】B【解析】【解答】解:∵x=﹣13∴代数式3x+y﹣3=3×(﹣13故选:B.【分析】直接将x,y的值代入求出答案.7.【答案】D【解析】【解答】解:当x﹣3≠0时,分式4x−3即当x≠3时,分式4x−3故选D.【分析】根据分式有意义的条件:分母≠0,列式解出即可.8.【答案】A【解析】【解答】解:∵△ABC~△DEF,相似比为3:2,∴对应高的比为3:2.故选:A.【分析】直接利用相似三角形对应高的比等于相似比可得出答案.9.【答案】B【解析】【解答】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=2,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF=1×2﹣12×1×1﹣=32﹣π故选:B.【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF,求出答案.10.【答案】C【解析】【解答】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.11.【答案】A【解析】【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i=CQBQ=10.75=∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=DPtan∠A=11∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i=CQBQ=10.75=43可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP=DP12.【答案】B【解析】【解答】解:分式方程2x−1+a1−x=4的解为x=∵关于x的分式方程2x−1+a∴6−a4>0且6−a∴a<6且a≠2.y+23解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组y+23∴a>﹣2.∴﹣2<a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,﹣1+0+1+3+4+5=12.故选B.【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a>﹣2,找出﹣2<a<6且a≠2中所有的整数,将其相加即可得出结论.13.【答案】1.1×104【解析】【解答】解:11000=1.1×104.故答案为:1.1×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11000有5位,所以可以确定n=5﹣1=4.14.【答案】4【解析】【解答】解:|﹣3|+(﹣1)2=4,故答案为:4.【分析】利用有理数的乘方法则,以及绝对值的代数意义化简即可得到结果.15.【答案】32°【解析】【解答】解:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.故答案为:32°.【分析】根据AO=OC,可得:∠ACB=∠OAC,然后根据∠AOB=64°,求出∠ACB的度数是多少即可.16.【答案】11【解析】【解答】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11,故答案为:11.【分析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.17.【答案】180【解析】【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.18.【答案】5【解析】【解答】解:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=12∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=2,Rt△DAF中,DF=42+2∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF=252=∴PD=DE如图2,∵DC∥AB,∴△DGC∽△FGA,∴CGAG=DC∴CG=2AG,DG=2FG,∴FG=13×25=∵AC=42+4∴CG=23×42=∴EG=823﹣2=连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH=2532∴EH=EF﹣FH=10﹣103=2由折叠得:GM⊥EF,MH=GH=103∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴DEMH∴10103=∴EN=3NH,∵EN+NH═EH=210∴EN=102∴NH=EH﹣EN=2103﹣102Rt△GNH中,GN=GH2+NH2由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=102+526+5故答案为:52【分析】如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=10,PD=DE2−PE219.【答案】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=12又∵AB∥CD,∴∠AFE=∠DEF=69°.【解析】【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.20.【答案】(1)126;(2)解:假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)=612=1【解析】【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×35100故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.用画树状图法,即可得出答案.21.【答案】(1)解:(1)x(x﹣2y)﹣(x+y)2,=x2﹣2xy﹣x2﹣2xy﹣y2,=﹣4xy﹣y2;(2)解:(3a+2+a﹣2)÷a=[3a+2+(a+2)(a−2)a+2]=a2=a+1a−1【解析】【分析】(1)先去括号,再合并同类项;(2)先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分.22.【答案】(1)解:由题意可得,BM=OM,OB=22,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=kx则﹣2=k−2∴反比例函数的解析式为y=4x∵点A的纵坐标是4,∴4=4x∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴m+n=4−2m+n=−2,得m=2即一次函数的解析式为y=2x+2;(2)解:∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:OM⋅OC2+OM⋅MB【解析】【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,点M、点B、点O的坐标,从而可以求得四边形MBOC的面积.23.【答案】(1)解:设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)解:由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【解析】【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.24.【答案】(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=32×22则CM=BC﹣BM=5﹣2=2,∴AC=AM2+CM2(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=BG=CE,因此∠BDG=∠G=∠E.【解析】【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.25.【答案】(1)解:)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)解:∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴x=1y=6或x=2y=5或x=3y=4或x=4y=3或∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴x=1y=6或x=4y=3或∴F(s)=6F(t)=12或F(s)=9F(t)=9或∴k=F(s)F(t)=12∴k的最大值为54【解析】【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=F(s)F(t)26.【答案】(1)解:∵y=33x2﹣233∴y=33∴A(﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版现代化办公室租赁场地合同样本3篇
- 二零二五版精制粉原料供应链风险管理合同3篇
- 二零二五版地震监测基站场地租赁与应急救援合同3篇
- 2025年度医疗健康产业园区承包经营合同范本3篇
- 二零二五版温泉度假酒店SPA服务人员劳动合同3篇
- 二零二五年度离婚经济补偿协议范本及调解服务合同3篇
- 二零二五年度能源项目合作开发PPP模式合同范本3篇
- 物业管理公司2025年度招投标代理合同3篇
- 二零二五年度车位租赁合同:住宅小区车位使用权协议2篇
- 2025厂房买卖合同模板:高端装备制造厂房交易3篇
- 煤焦化焦油加工工程设计规范
- 全国医疗服务价格项目规范2022年版价格测算表
- 2024年人教版小学三年级信息技术(下册)期末试卷附答案
- 中国子宫内膜增生管理指南(2022)解读
- 应征公民政治考核表(含各种附表)
- 2024年第九届“鹏程杯”五年级语文邀请赛试卷
- 名师成长论名师成长的模式、机制和规律研究
- FSSC22000V6.0变化点和文件修改建议
- 2024年高一年级上册语文期末复习:语言文字运用Ⅰ刷题练习题(含答案)
- 新苏教版三年级下册科学全册知识点(背诵用)
- 乡镇风控维稳应急预案演练
评论
0/150
提交评论