人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第1课时 计数原理及其简单应用_第1页
人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第1课时 计数原理及其简单应用_第2页
人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第1课时 计数原理及其简单应用_第3页
人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第1课时 计数原理及其简单应用_第4页
人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第1课时 计数原理及其简单应用_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1§6.1分类加法计数原理与分步乘法计数原理第1课时计数原理及其简单应用学习目标1.理解分类加法计数原理与分步乘法计数原理.2.会用这两个原理分析和解决一些简单的实际计数问题.导语从我们班推选出两名同学担任班长,有多少种不同的选法?如果把我们的同学排成一排,又有多少种不同的排法?要解决这些问题,就要运用有关排列、组合的知识.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理.这节课,我们来学习这两个原理.一、分类加法计数原理问题1某全国人大代表明天要从济南前往北京参加会议,他有两类快捷途径可供选择:一是乘飞机,二是乘高铁,假如这天飞机有3个航班可乘,高铁有4个班次可乘.那么该代表从济南到北京共有多少种快捷途径可选呢?〖提示〗该代表共有3+4=7(种)快捷途径可选.知识梳理分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.注意点:(1)完成这件事的若干种方法可以分成n类;(2)每类方法都可以完成这件事,且类与类之间两两不交.(3)完成一件事有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有mn种不同的方法,则完成这件事共有N=m1+m2+…+mn种不同的方法.例1(1)设集合A={1,2,3,4},m,n∈A,则方程eq\f(x2,m)+eq\f(y2,n)=1表示焦点位于x轴上的椭圆有()A.6个 B.8个C.12个 D.16个〖答案〗A〖解析〗因为椭圆的焦点在x轴上,所以m>n.当m=4时,n=1,2,3;当m=3时,n=1,2;当m=2时,n=1,即所求的椭圆共有3+2+1=6(个).延伸探究条件不变,结论变为“则方程eq\f(x2,m)-eq\f(y2,n)=1表示焦点位于x轴上的双曲线”有()A.6个 B.8个C.12个 D.16个〖答案〗D〖解析〗因为双曲线的焦点在x轴上,所以m>0,n>0,当m=1时,n=1,2,3,4;当m=2时,n=1,2,3,4;当m=3时,n=1,2,3,4;当m=4时,n=1,2,3,4,即所求的双曲线共有4+4+4+4=16(个).(2)在所有的两位数中,个位数字大于十位数字的两位数的个数为________.〖答案〗36〖解析〗方法一根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).方法二分析个位数字,可分以下几类:个位数字是9,则十位数字可以是1,2,3,…,8中的一个,故共有8个;个位数字是8,则十位数字可以是1,2,3,…,7中的一个,故共有7个;同理,个位数字是7的有6个;……个位数字是2的有1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).反思感悟(1)分类时,首先要根据问题的特点确定一个合适的分类标准,然后在这个标准下分类,要做到分类“不重不漏”.(2)利用分类加法计数原理计数时的解题流程.跟踪训练1(1)一个科技小组有3名男同学,5名女同学,从中任选1名同学参加学科竞赛,不同的选派方法共有________种.〖答案〗8〖解析〗任选1名同学参加学科竞赛,有两类方案:第一类,从男同学中选取1名参加学科竞赛,有3种不同的选法;第二类,从女同学中选取1名参加学科竞赛,有5种不同的选法.由分类加法计数原理得,不同的选派方法共有3+5=8(种).(2)若x,y∈N*,且x+y≤6,则有序自然数对(x,y)共有________个.〖答案〗15〖解析〗将满足条件x,y∈N*,且x+y≤6的x的值进行分类:当x=1时,y可取的值为5,4,3,2,1,共5个;当x=2时,y可取的值为4,3,2,1,共4个;当x=3时,y可取的值为3,2,1,共3个;当x=4时,y可取的值为2,1,共2个;当x=5时,y可取的值为1,共1个.即当x=1,2,3,4,5时,y的值依次有5,4,3,2,1个,由分类加法计数原理得,不同的数对(x,y)共有5+4+3+2+1=15(个).二、分步乘法计数原理问题2用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?〖提示〗编写一个号码要先确定一个英文字母,后确定一个阿拉伯数字,由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54(个)不同的号码.知识梳理分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.注意点:(1)完成一件事有多个步骤,缺一不可;(2)每一步都有若干种方法.(3)如果完成一件事情需要n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,则完成这件事情共有N=m1×m2×…×mn种不同的方法.例2(1)4名同学报名参加跑步、跳高、跳远三个项目,每人报一项,则不同的报名方法数为()A.43B.34C.7D.12〖答案〗B〖解析〗要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,四人都报完才算完成,于是按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有3×3×3×3=34(种)报名方法.延伸探究4名同学争夺跑步、跳高、跳远三个项目的冠军(每项冠军只允许一人获得),共有多少种可能的结果?解要完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,于是应以“确定三项冠军得主”为线索进行分步,而每项冠军是四人中的某一人,有4种可能的情况,于是共有4×4×4=64(种)可能的结果.(2)人们习惯把最后一位是6的多位数叫作“吉祥数”,则无重复数字的四位吉祥数(首位不能是零)共有_____个.〖答案〗448〖解析〗第一步,确定千位,除去0和6,有8种不同的选法;第二步,确定百位,除去6和千位数字外,有8种不同的选法;第三步,确定十位,除去6和千位、百位上的数字外,有7种不同的选法.故共有8×8×7=448(个)不同的“吉祥数”.反思感悟利用乘法计数原理解题的注意点及解题思路(1)应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.(2)利用分步乘法计数原理解题的一般思路①分步:将完成这件事的过程分成若干步;②计数:求出每一步中的方法数;③结论:将每一步中的方法数相乘得最终结果.跟踪训练2(1)一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成________个四位数的号码(各位上的数字允许重复).〖答案〗10000〖解析〗按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10000(个)四位数的号码.(2)从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共________个,其中不同的偶函数共________个.(用数字作答)〖答案〗186〖解析〗一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知,共有不同的二次函数3×3×2=18(个).若二次函数为偶函数,则b=0.a的取法有3种,c的取法有2种,由分步乘法计数原理知,共有不同的偶函数3×2=6(个).三、两个原理的简单应用例3现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?解(1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理,共有5+2+7=14(种)不同的选法.(2)分为三步:国画、油画、水彩画各有5种,2种,7种不同的选法,根据分步乘法计数原理,共有5×2×7=70(种)不同的选法.(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10(种)不同的选法;第二类是一幅选自国画,一幅选自水彩画,有5×7=35(种)不同的选法;第三类是一幅选自油画,一幅选自水彩画,有2×7=14(种)不同的选法.所以共有10+35+14=59(种)不同的选法.反思感悟(1)在处理具体的应用题时,首先必须弄清是“分类”还是“分步”,其次要搞清“分类”或“分步”的具体标准是什么,选择合理的标准处理事件,关键是看能否独立完成这件事,避免计数的重复或遗漏.(2)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.跟踪训练3集合A={1,2,-3},B={-1,-2,3,4},从A,B中各取1个元素,作为点P(x,y)的坐标.(1)可以得到多少个不同的点?(2)这些点中,位于第一象限的有几个?解(1)可分为两类:A中元素为x,B中元素为y或A中元素为y,B中元素为x,则共得到3×4+4×3=24(个)不同的点.(2)第一象限内的点,即x,y均为正数,所以只能取A,B中的正数,共有2×2+2×2=8(个)不同的点.1.知识清单:(1)分类加法计数原理.(2)分步乘法计数原理.2.方法归纳:分类讨论.3.常见误区:“分类”与“分步”不清,导致计数错误.1.某学生去书店,发现3本好书,决定至少买其中1本,则购买方式共有()A.3种B.6种C.7种D.9种〖答案〗C〖解析〗分3类:买1本书,买2本书和买3本书.各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7(种).2.现有3名老师、8名男生和5名女生共16人.若需1名老师和1名学生参加评选会议,则不同的选法种数为()A.39B.24C.15D.16〖答案〗A〖解析〗先从3名老师中任选1名,有3种选法,再从13名学生中任选1名,有13种选法.由分步乘法计数原理知,不同的选法种数为3×13=39.3.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的1个讲座,不同选法的种数是()A.56B.65

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论