无穷小与无穷大_第1页
无穷小与无穷大_第2页
无穷小与无穷大_第3页
无穷小与无穷大_第4页
无穷小与无穷大_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章函数与极限第六节无穷小与无穷大主要内容:一、无穷小的概念性质二、无穷小的比较三、无穷大及其与无穷小的关系一、无穷小的概念与性质1、定义例如,注意(1)无穷小是变量,不能与很小的数混淆;(2)零是可以作为无穷小的唯一的数.2、无穷小与函数极限的关系:证必要性充分性意义(1)将一般极限问题转化为特殊极限问题(无穷小);3、无穷小的运算性质:定理2

在同一过程中,有限个无穷小的代数和仍是无穷小.注意

无穷多个无穷小的代数和未必是无穷小.推论1

在同一过程中,有极限的变量与无穷小的乘积是无穷小.推论2

常数与无穷小的乘积是无穷小.都是无穷小定理3

有界函数与无穷小的乘积是无穷小.二、无穷小的比较例如,极限不同,反映了趋向于零的“快慢”程度不同.不可比.观察各极限定义2:例如,下面我们给出一些常用的当x→0时的等价无穷小:等价无穷小代换定理4(等价无穷小代换定理)证例3解若未定式的分子或分母为若干个因子的乘积,则可对其中的任意一个或几个无穷小因子作等价无穷小代换,而不会改变原式的极限.不能滥用等价无穷小代换.切记,只可对函数的因子作等价无穷小代换,对于代数和中各无穷小不能分别代换.注意例4解例5解解错小结1、无穷小的比较反映了同一过程中,两无穷小趋于零的速度快慢,但并不是所有的无穷小都可进行比较.2、等价无穷小的代换求极限的又一种方法,注意适用条件.高(低)阶无穷小;等价无穷小;无穷小的阶.三、无穷大定义3:特殊情形:正无穷大,负无穷大.注意(1)无穷大是变量,不能与很大的数混淆;无穷小与无穷大的关系定理5

在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大.意义

关于无穷大的讨论,都可归结为关于无穷小的讨论.内容小结1、主要内容:2、几点注意:无穷小与无穷大是相对于自变量的变化过程而言的.(1)无穷小(大)是变量,不能与很小(大)的数混淆,零是唯一的无穷小的数;(2)无穷多个无穷小的代数和(乘积)未必是无穷小;●无穷小与无穷大的定义;●无穷小与函数极限关系;●等价无穷小代换定理;●无穷小与不穷大的关系.思考题1、任何两个无穷小都可以比较吗?思考题解答不一定.例当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论