版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽合肥八中2023-2024学年高三第二次联考数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}2.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数,,若总有恒成立.记的最小值为,则的最大值为()A.1 B. C. D.4.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()A. B. C. D.5.若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是()A. B.C. D.6.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.7.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.8.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种9.函数的定义域为()A.或 B.或C. D.10.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.11.下图所示函数图象经过何种变换可以得到的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位12.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)二、填空题:本题共4小题,每小题5分,共20分。13.函数在上的最小值和最大值分别是_____________.14.已知函数在上仅有2个零点,设,则在区间上的取值范围为_______.15.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是_____16.甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.(Ⅰ)若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;(Ⅱ)若直线的斜率存在且不为0,四边形为平行四边形,求证:;(Ⅲ)在(Ⅱ)的条件下,判断四边形能否为矩形,说明理由.18.(12分)在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角,(1)求的值;(2)求边的长.19.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.20.(12分)已知函数,函数,其中,是的一个极值点,且.(1)讨论的单调性(2)求实数和a的值(3)证明21.(12分)已知函数.(1)若在处取得极值,求的值;(2)求在区间上的最小值;(3)在(1)的条件下,若,求证:当时,恒有成立.22.(10分)已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.【点睛】本题考查集合的交集运算,属于基础题.2、D【解析】
先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.【详解】解:由,得,所以,其在复平面内对应的点为,在第四象限故选:D【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.3、C【解析】
根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值,即.根据题意化简可得,求得,再换元求导分析最大值即可.【详解】由题,总有即恒成立.设,则的最大值小于等于0.又,若则,在上单调递增,无最大值.若,则当时,,在上单调递减,当时,,在上单调递增.故在处取得最大值.故,化简得.故,令,可令,故,当时,,在递减;当时,,在递增.故在处取得极大值,为.故的最大值为.故选:C【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.4、C【解析】
作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.5、C【解析】
由题可知,设函数,,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.【详解】设函数,,因为,所以,或,因为时,,或时,,,其图象如下:当时,至多一个整数根;当时,在内的解集中仅有三个整数,只需,,所以.故选:C.【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.6、B【解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.7、D【解析】
根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用双曲线的离心率公式求得e.【详解】直线F2A的直线方程为:y=kx,F1(0,),F2(0,),代入抛物线C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),设双曲线方程为:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴离心率e1,故选:D.【点睛】本题考查抛物线及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题.8、B【解析】
利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题9、A【解析】
根据偶次根式被开方数非负可得出关于的不等式,即可解得函数的定义域.【详解】由题意可得,解得或.因此,函数的定义域为或.故选:A.【点睛】本题考查具体函数定义域的求解,考查计算能力,属于基础题.10、D【解析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.11、D【解析】
根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,,故,即,,,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.12、C【解析】
利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求导,研究函数单调性,分析,即得解【详解】由题意得,,令,解得,令,解得.在上递减,在递增.,而,故在区间上的最小值和最大值分别是.故答案为:【点睛】本题考查了导数在函数最值的求解中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题14、【解析】
先根据零点个数求解出的值,然后得到的解析式,采用换元法求解在上的值域即可.【详解】因为在上有两个零点,所以,所以,所以且,所以,所以,所以,令,所以,所以,因为,所以,所以,所以,所以,,所以.故答案为:.【点睛】本题考查三角函数图象与性质的综合,其中涉及到换元法求解三角函数值域的问题,难度较难.对形如的函数的值域求解,关键是采用换元法令,然后根据,将问题转化为关于的函数的值域,同时要注意新元的范围.15、20+45,8【解析】试题分析:由题意得,该几何体为三棱柱,故其表面积S=2×1体积V=12×4×2×2=8,故填:20+4考点:1.三视图;2.空间几何体的表面积与体积.16、【解析】
根据条件概率的求法,分别求得,再代入条件概率公式求解.【详解】根据题意得所以故答案为:【点睛】本题主要考查条件概率的求法,还考查了理解辨析的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)不能,证明见解析【解析】
(Ⅰ)计算得到故,,,,计算得到面积.(Ⅱ)设为,联立方程得到,计算,同理,根据得到,得到证明.(Ⅲ)设中点为,根据点差法得到,同理,故,得到结论.【详解】(Ⅰ),,故,,,.故四边形的面积为.(Ⅱ)设为,则,故,设,,故,,同理可得,,故,即,,故.(Ⅲ)设中点为,则,,相减得到,即,同理可得:的中点,满足,故,故四边形不能为矩形.【点睛】本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.18、(1)(2)【解析】
(1)由,分别求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【详解】(1)因为角为钝角,,所以,又,所以,且,所以.(2)因为,且,所以,又,则,所以.19、(1)(2)【解析】
(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.20、(1)在区间单调递增;(2);(3)证明见解析.【解析】
(1)求出,在定义域内,再次求导,可得在区间上恒成立,从而可得结论;(2)由,可得,由可得,联立解方程组可得结果;(3)由(1)知在区间单调递增,可证明,取,可得,而,利用裂项相消法,结合放缩法可得结果.【详解】(1)由已知可得函数的定义域为,且,令,则有,由,可得,可知当x变化时,的变化情况如下表:1-0+极小值,即,可得在区间单调递增;(2)由已知可得函数的定义域为,且,由已知得,即,①由可得,,②联立①②,消去a,可得,③令,则,由(1)知,,故,在区间单调递增,注意到,所以方程③有唯一解,代入①,可得,;(3)证明:由(1)知在区间单调递增,故当时,,,可得在区间单调递增,因此,当时,,即,亦即,这时,故可得,取,可得,而,故.【点睛】本题主要考查利用导数研究函数的单调性以及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.21、(1)2;(2);(3)证明见解析【解析】
(1)先求出函数的定义域和导数,由已知函数在处取得极值,得到,即可求解的值;(2)由(1)得,定义域为,分,和三种情况讨论,分别求得函数的最小值,即可得到结论;(3)由,得到,把,只需证,构造新函数,利用导数求得函数的单调性与最值,即可求解.【详解】(1)由,定义域为,则,因为函数在处取得极值,所以,即,解得,经检验,满足题意,所以.(2)由(1)得,定义域为,当时,有,在区间上单调递增,最小值为,当时,由得,且,当时,,单调递减;当时,,单调递增;所以在区间上单调递增,最小值为,当时,则,当时,,单调递减;当时,,单调递增;所以在处取得最小值,综上可得:当时,在区间上的最小值为1,当时,在区间上的最小值为.(3)由得,当时,,则,欲证,只需证,即证,即,设,则,当时,,在区间上单调递增,当时,,即,故,即当时,恒有成立.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化妆用爽肤水产业链招商引资的调研报告
- 家禽环产品供应链分析
- 2024年安徽沚津大健康产业发展有限公司招聘18人笔试模拟试题及答案解析
- 水务行业大数据的应用前景计划
- 施工现场关键人员变更申请
- 推动数字化管理的年度计划
- 主管的自我反思与成长计划
- 实施员工健康管理的方案计划
- 火场救援专业培训
- 学校美术作品评比活动实施方案计划
- 聚乙烯PE管道施工方案完整
- 流动资金贷款需求量测算参考计算表(XLS12)
- 西师大版六年级数学上册期中测试卷(附答案)
- 岗位价值评估方法(共15页)
- 202X年妇联赴外出学习考察心得体会.doc
- suzuki偶联反应(课堂PPT)
- 《平均分的认识》说课稿青岛版
- 悬臂式挡土墙计算37623
- 现有或拟新增加的放射源和射线装置明细表
- 三年级上册数学教师家长会PPT
- 成都市院士(专家)创新工作站管理办法
评论
0/150
提交评论