下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三校联考2024年春季学期高一年级第一次月考数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.第I卷第1页至第2页,第Ⅱ卷第3页至第4页.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.第I卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的)1.已知集合,则()A. B. C. D.2.下列函数中,以点为对称中心的函数是()A B.C. D.3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若,则()A. B. C. D.5.已知函数,若,则的值为()A. B.2 C. D.6.函数在区间上单调递减,则的取值范围为()A. B. C. D.7.已知函数满足,且函数为偶函数,若,则()A.0 B.1012 C.2024 D.30368.若关于的不等式的解集中恰有三个整数,则实数的取值范围为()A. B. C. D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)9.若关于的不等式的解集为,则下列说法正确的是()A.B.C.的解集为D.的最小值为10.下列说法正确是()A.奇函数的定义域为,则B.对任意且,函数图象都过定点C.与是同一个函数D.11.已知函数,下列说法正确的是()A.函数的最大值为B.函数的图象关于中心对称C.函数的最小正周期为D.要得到函数的图象,只需将函数的图象横坐标伸长为原来的2倍,再向左平移个单位,最后再向上平移个单位12.已知为函数的两个不相同的零点,则下列式子一定正确的是()A. B.C. D.第Ⅱ卷(非选择题,共90分)注意事项:第Ⅱ卷用黑色碳素笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.三、填空题(本大题共4小题,每小题5分,共20分)13.计算:__________.14.某商店销售两款商品,利润(单位:元)分别为和,其中为销量(单位:袋),若本周销售两款商品一共20袋,则能获得的最大利润为__________.15.若、为锐角,且,则__________.16.如图所示,以为始边作钝角,角的终边与单位圆交于点,将角的终边顺时针旋转得到角.角的终边与单位圆相交于点,则的取值范围为__________.四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.已知二次函数的解集为.(1)若,求的值;(2)若,求实数的取值范围.18.已知是的内角,且.(1)求的值;(2)求的值.19.已知函数为幂函数,且在上单调递减.(1)求实数的值;(2)若函数,判断函数在上的单调性,并证明.20.设函数,其中.(1)若命题“”为假命题,求实数取值范围;(2)若函数在区间内恒成立,求实数的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版电子商务平台搭建与推广合同3篇
- 2024年度国际酒店管理服务与加盟合同3篇
- 2024年个体运输服务合同2篇
- 2024版内墙涂料粉刷环保要求合同3篇
- 2024年房产证押借款合同8篇
- 防洪工程施工监理合同三篇
- 2024年劳务派遣公司合同样本
- 2024年出口业务中间商报酬合同一
- 2024年合同授权代表委托说明书3篇
- 2024年度高品质五金材料采购合同样本版
- 2024年国际劳务输出合作合同(中英版)版B版
- 中华人民共和国安全生产法知识培训
- 2023年北京市燕山初三二模化学试卷及答案
- 儿童脑瘫中医治疗
- 共青团教育课件
- 2024年保险公司工作计划模版(2篇)
- 消除歧视关爱艾滋病
- 考研计算机学科专业基础(408)研究生考试试卷与参考答案(2025年)
- 2024 ESC慢性冠脉综合征指南解读(全)
- 学校消防安全隐患排查整治方案3篇
- 华南理工大学《民法总论》2021-2022学年第一学期期末试卷
评论
0/150
提交评论