2025《初中数学》专题突破专题61 二次函数背景下的相似三角形问题(含答案及解析)_第1页
2025《初中数学》专题突破专题61 二次函数背景下的相似三角形问题(含答案及解析)_第2页
2025《初中数学》专题突破专题61 二次函数背景下的相似三角形问题(含答案及解析)_第3页
2025《初中数学》专题突破专题61 二次函数背景下的相似三角形问题(含答案及解析)_第4页
2025《初中数学》专题突破专题61 二次函数背景下的相似三角形问题(含答案及解析)_第5页
已阅读5页,还剩86页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

模型介绍模型介绍在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【相似判定】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了.

例题精讲例题精讲【例1】.如图,抛物线y=﹣x2+x+2交x轴于点A,B,交y轴于点C,点M是第一象限内抛物线上一点,过点M作MN⊥x轴于点N.若△MON与△BOC相似,求点M的横坐标.变式训练【变1-1】.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.【例2】.如图,抛物线y=x2+bx+c与x轴交于A(1,0),B两点,与y轴交于点C(0,3).(1)求该抛物线的表达式;(2)过点B作x轴的垂线,在该垂线上取一点P,使得△PBC与△ABC相似,请求出点P的坐标.变式训练【变2-1】.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.1.抛物线y=﹣x2平移后的位置如图所示,点A,B坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.(1)求平移后的抛物线的解析式和点D的坐标;(2)∠ACB和∠ABD是否相等?请证明你的结论;(3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.2.如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过c点的直线为y轴建立平面直角坐标系.此时,A点坐标为(﹣1,0),B点坐标为(4,0)(1)试求点C的坐标;(2)若抛物线y=ax2+bx+c过△ABC的三个顶点,求抛物线的解析式;(3)点D(1,m)在抛物线上,过点A的直线y=﹣x﹣1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.3.如图已知直线y=x+与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.4.如图,已知抛物线经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)直接写出:b=,c=;(2)过点P且与y轴平行的直线l与直线AB,AC分别交于点E,F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,若存在,直接写出点Q的坐标,若不存在,请说明理由.5.已知抛物线经过点A(﹣2,0),B(0,﹣4),与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求直线AP的表达式;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请直接写出点D的坐标;若不存在,请说明理由.6.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,直线CP与x轴交于点Q,当∠BQC=∠BCO时,求此时P点坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CNM=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.7.如图,抛物线与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为点C,D,.(1)求b,c的值;(2)求直线CD的函数解析式;(3)求∠ADB的度数;(4)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.8.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点,试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.9.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;(3)将抛物线在0≤x≤3之间的部分记为图象L,将图象L在直线y=t上方部分沿直线y=t翻折,其余部分保持不动,得到一个新的函数图象,记这个函数的最大值为a,最小值为b,若a﹣b≤3,请直接写出t的取值范围.10.如图所示,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴相交于点C,B、C两点的坐标分别为(1,0)、(0,﹣3),直线y=kx+3k经过点A,与y轴交于点D.(1)求抛物线的函数表达式;(2)点E是抛物线上一动点(不与点C重合),连接AE,过点E作EF⊥x轴,垂足为F,若△AEF是等腰直角三角形,求点E的坐标;(3)在(2)的条件下,若在直线y=kx+3k上存在一点G使得△DFG与△AOC相似,求出k的值.11.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.12.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)求出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D,F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点,若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.13.设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;(3)在(2)的条件下,△BDP的外接圆半径等于.14.如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?15.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,①求点M的坐标;②在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.16.抛物线y=ax2+6x+c过A(2,3),B(4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB,交AC于点E,若满足.求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得△BQP与△ABF相似(P与F为对应点),若存在,直接写出P、Q的坐标及此时△BQP的面积;若不存在,请说明理由.17.如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①求点Q的坐标(横、纵坐标均用含m的代数式表示)②连接AP,若2AP>OQ,求m的取值范围;③当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于6.18.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.19.如图,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过点A,B.(I)求抛物线的解析式;(Ⅱ)M(m,0)为x轴上一个动点,过点M作直线MN垂直于x轴,与直线AB和抛物线分别交于点P、N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”,请直接写出使得M,P,N三点成为“共谐点”的m的值.20.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣4,0)、B(1,0),与y轴交于点C(0,2).(1)求抛物线的表达式;(2)将△ABC绕AB中点E旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点F,使△AEF与△BAD相似?若存在,求所有满足条件的F点的坐标;若不存在,请说明理由.21.已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.22.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求点A的坐标与抛物线的表达式;(2)连接CD,AD,设四边形OADC的面积为S.①求S与m的关系式;②当S最大时,求D点的坐标.(3)若点P是对称轴上一点,当△DPF∽△BOC时,求m的值.

模型介绍模型介绍在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【相似判定】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了.

例题精讲例题精讲【例1】.如图,抛物线y=﹣x2+x+2交x轴于点A,B,交y轴于点C,点M是第一象限内抛物线上一点,过点M作MN⊥x轴于点N.若△MON与△BOC相似,求点M的横坐标.解:∵抛物线y=﹣x2+x+2交x轴于点A,B,交y轴于点C,∴当y=0时,0=﹣x2+x+2,解得x1=﹣1,x2=4,∴OB=4,当x=0时,y=2,∴OC=2,∵点M是第一象限内抛物线上一点,∴设M(m,﹣m2+m+2),∵MN⊥x轴,∴ON=m,MN=﹣m2+m+2,∠ONM=90°,∵∠BOC=90°,∴∠BOC=∠ONM,∵△MON与△BOC相似,∴或,∴=或=,∴m=或m=﹣1+(负值舍去),∴点M的横坐标为或﹣1+.变式训练【变1-1】.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,解得:k=5,∴此抛物线的解析式为y=x2+5x+4,∴此抛物线的对称轴为x=﹣=﹣.令y=0得x2+5x+4=0,解得:x1=﹣1,x2=﹣4,∴点B的坐标为(﹣1,0).(2)∵A(﹣4,0),C(0,4),∴OA=OC=4,∴∠OCA=∠OAC.∵∠AOC=90°,OB=1,OC=OA=4,∴AC==4,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,∴=,即=,解得:CD=,∴OD=CD﹣CO=﹣4=,∴点D的坐标为(0,﹣).【例2】.如图,抛物线y=x2+bx+c与x轴交于A(1,0),B两点,与y轴交于点C(0,3).(1)求该抛物线的表达式;(2)过点B作x轴的垂线,在该垂线上取一点P,使得△PBC与△ABC相似,请求出点P的坐标.解:(1)把C(0,3)代入y=x2+bx+c,得c=3,∴y=x2+bx+3,把A(1,0)代入y=x2+bx+3,得1+b+3=0,解得b=﹣4,∴该抛物线的表达式为y=x2﹣4x+3.(2)当点P在点B上方时,如图1,PB=AB,∵PB⊥x轴,∴∠ABP=90°,抛物线y=x2﹣4x+3,当y=0时,则x2﹣4x+3=0,解得x1=1,x2=3,∴B(3,0),∴OB=OC=3,PB=AB=3﹣1=2,∵∠BOC=90°,∴∠OBC=∠OCB=45°,∴∠PBC=∠ABC=45°,∵==1,∴△PBC∽△ABC,此时点P的坐标为(3,2);如图2,△PBC∽△CBA,且∠CBP=∠ABC=45°,∠BCP=∠BAC,∴=,∵BC2=OB2+OC2=32+32=18,BA=2,∴BP===9,此时点P的坐标为(3,9);当点P在点B下方时,∠PBC=135°,∠BAC=∠AOC+∠ACO=90°+∠ACO<135°,此时△PBC与△ABC不相似,综上所述,点P的坐标为(3,2)或(3,9).变式训练【变2-1】.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设点P(m,m2﹣2m﹣3),①当点P在第三象限时,设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S△POD=×OG(xD﹣xP)=(3+2m)(2﹣m)=﹣m2+m+3,②当点P在第四象限时,设PD交y轴于点M,同理可得:S△POD=×OM(xD﹣xP)=﹣m2+m+3,综上,S△POD=﹣m2+m+3,∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=或﹣,故点Q(,﹣2)或(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,)或(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(﹣,2)或(,)或(,).1.抛物线y=﹣x2平移后的位置如图所示,点A,B坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.(1)求平移后的抛物线的解析式和点D的坐标;(2)∠ACB和∠ABD是否相等?请证明你的结论;(3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.解:(1)∵将抛物线y=﹣x2平移,平移后的抛物线与x轴交于点A(﹣1,0)和点B(3,0),∴平移后的抛物线的表达式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,即y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)∠ACB与∠ABD相等,理由如下:如图,∵y=﹣x2+2x+3,∴点x=0时,y=3,即C点坐标为(0,3),又∵B(3,0),∠BOC=90°,∴OB=OC,∠OBC=∠OCB=45°.在△BCD中,∵BC2=32+32=18,CD2=12+12=2,BD2=22+42=20,∴BC2+CD2=BD2,∴∠BCD=90°,∴tan∠CBD===,∵在△AOC中,∠AOC=90°,∴tan∠ACO==,∴tan∠ACO=tan∠CBD,∴∠ACO=∠CBD,∴∠ACO+∠OCB=∠CBD+∠OBC,即∠ACB=∠ABD;(3)∵点P在平移后的抛物线的对称轴上,而y=﹣x2+2x+3的对称轴为x=1,∴可设P点的坐标为(1,n).∵△ABC是锐角三角形,∴当△CDP与△ABC相似时,△CDP也是锐角三角形,∴n<4,即点P只能在点D的下方,又∵∠CDP=∠ABC=45°,∴D与B是对应点,分两种情况:①如果△CDP∽△ABC,那么=,即=,解得n=,∴P点的坐标为(1,);②如果△CDP∽△CBA,那么=,即=,解得n=,∴P点的坐标为(1,).综上可知P点的坐标为(1,)或(1,).2.如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过c点的直线为y轴建立平面直角坐标系.此时,A点坐标为(﹣1,0),B点坐标为(4,0)(1)试求点C的坐标;(2)若抛物线y=ax2+bx+c过△ABC的三个顶点,求抛物线的解析式;(3)点D(1,m)在抛物线上,过点A的直线y=﹣x﹣1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.解:(1)在Rt△ABC中,∠ACB=90°,OC⊥AB,由射影定理,得:OC2=OA•OB=4,即OC=2,∴C(0,2);(2)∵抛物线经过A(﹣1,0),B(4,0),C(0,2),可设抛物线的解析式为y=a(x+1)(x﹣4)(a≠0),则有:2=a(0+1)(0﹣4),a=﹣,∴y=﹣(x+1)(x﹣4)=﹣x2+x+2;(3)存在符合条件的P点,且P(,0)或(﹣,0).根据抛物线的解析式易知:D(1,3),联立直线AE和抛物线的解析式有:,解得,,∴E(6,﹣7),∴tan∠DBO==1,即∠DBO=45°,tan∠EAB==1,即∠EAB=45°,∴∠DBA=∠EAB,若以P、B、D为顶点的三角形与△ABE相似,则有两种情况:①△PBD∽△BAE;②△PBD∽△EAB.易知BD=3,EA=7,AB=5,由①得:,即,即PB=,OP=OB﹣PB=,由②得:,即,即P′B=,OP′=OB﹣BP′=﹣,∴P(,0)或(﹣,0).3.如图已知直线y=x+与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.解:(1)将点B(4,m)代入y=x+,∴m=,将点A(﹣1,0),B(4,),C(0,﹣)代入y=ax2+bx+c,解得a=,b=﹣1,c=﹣,∴函数解析式为y=x2﹣x﹣;(2)设P(n,n2﹣n﹣),则经过点P且与直线y=x+垂直的直线解析式为y=﹣2x+n2+n﹣,直线y=x+与其垂线的交点G(n2+n﹣,n2+n+),∴GP=(﹣n2+3n+4),当n=时,GP最大,此时△PAB的面积最大,∴P(,﹣),∵AB=,PG=,∴△PAB的面积=××=;(3)∵M(1,﹣2),A(﹣1,0),D(3,0),∴AM=2,AD=4,MD=2,∴△MAD是等腰直角三角形,∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设N(t,t2﹣t﹣)①如图1,当MQ⊥QN时,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,∵QN=MN,∠QNM=90°,∴△MNS≌△NMS(AAS)∴t﹣1=﹣t2+t+,∴t=±,∴t>1,∴t=,∴N(,1﹣);③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点M作MR∥x轴,与过Q点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),∴SQ=QR=2,∴t+2=1+t2﹣t﹣,∴t=5,∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴t2﹣t﹣=t﹣1,∴t=2±,∵t>1,∴t=2+,∴N(2+,1+);综上所述:N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).4.如图,已知抛物线经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)直接写出:b=2,c=1;(2)过点P且与y轴平行的直线l与直线AB,AC分别交于点E,F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,若存在,直接写出点Q的坐标,若不存在,请说明理由.解:(1)将点A(0,1),B(﹣9,10)代入,∴,解得,∴抛物线的解析式为,∴b=2,c=1,故答案为:2,1;(2)∵AC∥x轴,A(0,1),∴,∴x1=﹣6,x2=0,∴C(﹣6,1),∵A(0,1),B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点,则E(m,﹣m+1),∴,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=×AC×EF+=×AC×(EF+PF)=×AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0,当时,四边形AECP的面积的最大值是,此时点;(3)存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,理由如下:∵,∴P(﹣3,﹣2),∴PF=yF﹣yP=3,CF=xF﹣xC=3,∴PF=CF,∴∠PCF=45°.同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1),∵A(0,1),B(﹣9,10),C(﹣6,1),∴,AC=6,,以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1);②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1);综上所述:Q点坐标为(﹣4,1)或(3,1).5.已知抛物线经过点A(﹣2,0),B(0,﹣4),与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求直线AP的表达式;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请直接写出点D的坐标;若不存在,请说明理由.解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,∵S△PBO=S△PBC,∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x1=0(舍),x2=6,∴P(6,8),∴AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△ABC、△ABE、△ACE、△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,OE=﹣2=∴E(,0),∵B(0,﹣4),∴BE:y=3x﹣4,则x2﹣x﹣4=3x﹣4,x1=0(舍),x2=8,∴D(8,20);②当△ABE与以B,C、E中的三点为顶点的三角形相似,如图3,此时E在C的左边,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m1=2,m2=,∴OE=4m﹣4=12或,∵OE=<2,∠AEB或∠BEC是钝角,此时△ABE与以B,C、E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);同理可得E在C的右边时,△ABE∽△BCE,∴=,设AE=2m,BE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2+2m﹣5=0,(m+)(3m﹣)=0,m1=﹣,m2=,∴OE=﹣12(舍)或,∵OE=<4,∠BEC是钝角,此时△ABE与以B,C、E中的三点为顶点的三角形不相似,综上,点D的坐标为(8,20)或(,﹣6.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,直线CP与x轴交于点Q,当∠BQC=∠BCO时,求此时P点坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CNM=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+6得:,解得,∴抛物线的解析式为y=﹣2x2+4x+6;(2)由y=﹣2x2+4x+6得C(0,6),∴OC=6,当Q在x轴正半轴,如图:∵∠BQC=∠BCO,且∠COB=∠QOC,∴△COB∽△QOC,∴=,即=,∴OQ=12,∴Q(12,0),设直线CQ解析式为y=kx+6,则0=12k+6,∴k=﹣,即直线CQ为y=﹣x+6,由得(与C重合,舍去)或,∴P(,),当Q在x轴负半轴,如图:同理可得:△BOC∽△BCQ,∴=,即BC2=OB•BQ,而OC=6,OB=3,∴BC=3,∴(3)2=3×BQ,∴BQ=15,∴Q(﹣12,0),设直线CQ为y=mx+6,则0=﹣12m+6,解得m=,∴直线CQ为y=x+6,由得(舍去)或,∴P(,),综上所述,P点坐标为(,)或(,),(3)设M(t,﹣2t2+4t+6),则N(0,﹣2t2+4t+6),∴MN=|t|,CN=|2t2﹣4t|,∵OC=6,OB=3,∴OC=2OB,∵△CMN与△OBC相似,∴MN=2CN或CN=2MN,①MN=2CN时,如图:∴|t|=2|2t2﹣4t|,解得t=或t=或t=0(舍去),∴M(,),N(0,)或M(,),N(0,);②CN=2MN时,如图:∴|2t2﹣4t|=2|t|,解得t=0(舍去)或t=3(M与B重合,舍去)或t=1,∴M(1,8),N(0,8),综上所述,M(,),N(0,)或M(,),N(0,)或M(1,8),N(0,8).7.如图,抛物线与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为点C,D,.(1)求b,c的值;(2)求直线CD的函数解析式;(3)求∠ADB的度数;(4)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.解:(1)∵点A,B分别位于原点的左、右两侧,BO=3AO=3,∴A(﹣1,0),B(3,0),把A(﹣1,0),B(3,0)代入y=x2+bx+c,得,解得:,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,则∠DEB=∠COB=90°,∴DE∥OC,∴=,∵BC=CD,OB=3,∴=,∴OE=,∴点D横坐标为﹣,当x=﹣时,y=×(﹣)2﹣×(﹣)﹣=+1,∴点D坐标为(﹣,+1),设直线BD的函数解析式为y=kx+n,把B(3,0),D(﹣,+1)代入,得,解得:,∴直线BD的函数解析式为y=﹣x+;(3)如图2,连接AC,∵直线BD的函数解析式为y=﹣x+,∴C(0,),∵A(﹣1,0),D(﹣,+1),∴AC2=OA2+OC2=12+()2=4,则AC=2,BC2=OB2+OC2=32+()2=12,则BC=2,∴AB=3﹣(﹣1)=4,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠ACD=180°﹣90°=90°,∵BC=CD,∴CD=2,∴tan∠ADB===1,∴∠ADB=45°;(4)在△ABD中,tan∠ABD==,∴∠ABD=30°,∵∠ADB=45°,∴∠BAD=180°﹣(∠ABD+∠ADB)=180°﹣(30°+45°)=105°,∵CD=2,BC=CD=2,∴BD=BC+CD=2+2,由(3)知:AC=CD=2,∠ACD=90°,AB=4,∴AD=2,∵y=x2﹣x﹣,∴对称轴为直线x=1.∵点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,∴∠PBQ<90°,∴分两种情况:①当∠PBQ=∠ABD=30°时,如图3,设对称轴与x轴交于点M,则M(1,0),∴BM=3﹣1=2,∴PM=BM•tan∠PBQ=2×tan30°=,∵点P在抛物线的对称轴上且在x轴下方,∴P(1,﹣),BP===,∵△ABD与△BPQ相似,且∠PBQ=∠ABD,∴=或=,∴=或=,∴BQ=或BQ=,∴Q(,0)或(,0);②当∠PBQ=∠ADB=45°时,如图4,∵PM=BM•tan∠PBQ=2tan45°=2,∴P(1,﹣2),∴BP=2,∵△ABD与△BPQ相似,且∠PBQ=∠ADB,∴=或=,∴=或=,∴BQ=2﹣2或2+2,∴Q(5﹣2,0)或(1﹣2,0);综上所述,点Q的坐标为Q(,0)或Q(,0)或Q(5﹣2,0)或Q(1﹣2,0).8.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点,试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y=a(x+1)(x﹣4).将C(0,﹣2)代入得:﹣4a=﹣2,解得a=,∴抛物线的解析式为y=(x+1)(x﹣4),即y=x2﹣x﹣2.(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK∥DG,∴△AKE∽△DFE,∴=.设直线BC的解析式为y=kx+b1,∴,解得,∴直线BC的解析式为y=x﹣2,∵A(﹣1,0),∴y=﹣﹣2=﹣,∴AK=,设D(m,m2﹣m﹣2),则F(m,m﹣2),∴DF=m﹣2﹣m2+m+2=﹣m2+2m.∴==﹣(m﹣2)2+.∴当m=2时,有最大值,最大值是.(3)符合条件的点P的坐标为(,)或(,).∵l∥BC,∴直线l的解析式为y=x,设P(a1,),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(﹣1,0),C(0,﹣2),B(4,0),∴AC=,AB=5,BC=2,∵AC2+BC2=AB2,∴∠ACB=90°,∵△PQB∽△CAB,∴==,∵∠QMP=∠BNP=90°,∴∠MQP+∠MPQ=90°,∠MPQ+∠BPN=90°,∴∠MQP=∠BPN,∴△QPM∽△PBN,∴===,∴QM=,PM=(a1﹣4)=a1﹣2,∴MN=a1﹣2,ON﹣QM=a1﹣=a1,∴Q(a1,a1﹣2),将点Q的坐标代入抛物线的解析式得×(a1)2﹣×a1﹣2=a1﹣2,解得a1=0(舍去)或a1=.∴P(,).②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(a1,2).此时点P的坐标为(,).综上所述,符合条件的点P的坐标是(,)或(,).9.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;(3)将抛物线在0≤x≤3之间的部分记为图象L,将图象L在直线y=t上方部分沿直线y=t翻折,其余部分保持不动,得到一个新的函数图象,记这个函数的最大值为a,最小值为b,若a﹣b≤3,请直接写出t的取值范围.解:(1)将(3,0)代入y=﹣x+c得0=﹣2+c,解得c=2,∴y=﹣x+2.将x=0代入y=﹣x+2得y=2,∴点B坐标为(0,2).将(3,0),(0,2)代入y=﹣x2+bx+c得,解得,∴y=﹣x2+x+2.(2)如图,当BM∥AM时满足题意,点B,N关于抛物线对称轴对称,∵y=﹣x2+x+2,∴抛物线对称轴为直线x=﹣=,∴点N坐标为(,2),∴点M坐标为(,0).如图,当∠NBP=90°时符合题意,作NC⊥y轴于点C,则N(m,﹣m2+m+2),∵∠NBC+∠ABO=∠ABO+∠BAO=90°,∴∠NBC=∠BAO,∴△BCN∽△AOB,∴=,即,解得m=,∴点M坐标为(,0).综上所述,点M坐标为(,0)或(,0).(3)∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线顶点坐标为(,),∴翻折后顶点坐标为(,2t﹣),当点A为最低点时,t﹣0≤3,解得t≤3,令t﹣(2t﹣)=3,解得t=,∴≤t≤3.10.如图所示,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴相交于点C,B、C两点的坐标分别为(1,0)、(0,﹣3),直线y=kx+3k经过点A,与y轴交于点D.(1)求抛物线的函数表达式;(2)点E是抛物线上一动点(不与点C重合),连接AE,过点E作EF⊥x轴,垂足为F,若△AEF是等腰直角三角形,求点E的坐标;(3)在(2)的条件下,若在直线y=kx+3k上存在一点G使得△DFG与△AOC相似,求出k的值.解:(1)∵直线y=kx+3k经过点A,则点A的坐标为(﹣3,0),将点A、B、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为y=x2+2x﹣3;(2)设点E的坐标为(x,x2+2x﹣3),则AF=|x+3|,EF=|x2+2x﹣3|,∵△AEF是等腰直角三角形,∴AF=EF,∴|x2+2x﹣3|=|x+3|,∴x=﹣3(舍去)或x=0(舍去)或x=2,故点E的坐标为(2,5);(3)∵CO=BO=3,故△AOC为等腰直角三角形,当△DFG与△AOC相似时,则△DFG为等腰直角三角形,显然∠DFG不可能为直角,∵直线y=kx+3k与y轴交于点D,则点D(0,3k),由(2)知,点F(2,0),①当∠FDG为直角时,∵点G在直线AD上,故在∠FDG的前提下,总能找到GD=DF,故只需要DF⊥AD即可,在等腰Rt△FDG中,由直线AD的表达式为:y=kx+3k,则tan∠DOA=k,而tan∠DFO====,解得k=±;②当∠FGD为直角时,如下图,过点G作MN∥y轴,交x轴于点N,交过点D与x轴的平行线于点M,则DG=GF,设点G的坐标为(t,kt+3k),则MD=﹣t,MG=3k﹣tk﹣3k=﹣kt;GN=kt+3k,FN=2﹣t,∵∠MGD+∠FGN=90°,∠FGN+∠GFN=90°,∴∠MGD=∠GFN,∵∠GMD=∠FNG=90°,GD=FG,∴△GMD≌△FNG(AAS),∴MD=GN,MG=NF,即﹣t=kt+3k且﹣kt=2﹣t,解得k=2或﹣;当∠DFG=90°时,过点G作GH⊥x轴于H,则△ODF≌△HFG,∴GH=OF=2,HF=OD=3k,∵y=﹣2时,﹣2=kx+3k,∴x=,∴2+=3k,解得k=2或﹣综上,k=±或2或﹣.11.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.解:(1)把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣1,得解得∴抛物线解析式为:y=∴抛物线对称轴为直线x=﹣(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,﹣1)关于直线x=1的对称点C′(2,﹣1),连C′O与直线x=1的交点即为P点.设过点C′、O直线解析式为:y=kx∴k=﹣∴y=﹣则P点坐标为(1,﹣)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,﹣a﹣1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,﹣)∵N为DM中点∴点M坐标为(2a,)把M代入y=,解得a=0(舍去)或a=4∴a=4则N点坐标为(4,﹣3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点M由(2)M为(2,﹣1)∴由相似CN=,MN=由面积法求N到MC距离为则N点坐标为(,﹣)∴N点坐标为(4,﹣3)或(,﹣)12.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)求出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D,F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点,若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.解:(1)由题意知,解得:,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•(xN﹣1)﹣BG•(xM﹣1)=1,∴xN﹣xM=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则xN=、xM=,由xN﹣xM=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,,∴,∴t2﹣(1+m)t+2=0①;②当△PCD∽△POF时,,∴,∴t=(m+1)②;(Ⅰ)当方程①有两个相等实数根时,Δ=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)2+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程②有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).13.设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;(3)在(2)的条件下,△BDP的外接圆半径等于或.解:(1)令x=0,得y=﹣2,∴C(0,﹣2),∵∠ACB=90°,CO⊥AB,∴△AOC∽△COB,∴OA•OB=OC2∴OB=,∴m=4,将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,∴抛物线的解析式为y=x2﹣x﹣2.(2)D(1,n)代入y=x2﹣x﹣2,得n=﹣3,由,得,,∴E(6,7),过E作EH⊥x轴于H,则H(6,0)∴AH=EH=7∴∠EAH=45°过D作DF⊥x轴于F,则F(1,0)∴BF=DF=3∴∠DBF=45°∴∠EAH=∠DBF=45°∴∠DBH=135°,90°<∠EBA<135°则点P只能在点B的左侧,有以下两种情况:①若△DBP1∽△EAB,则∴BP1===∴OP1=4﹣=,∴P1(,0).②若△DBP2∽△BAE,则∴BP2===∴OP2=﹣4=∴P2(﹣,0).综合①、②,得点P的坐标为:P1(,0)或P2(﹣,0).(3)或.如图所示:先作△BPD的外接圆,过P作直径PM,连接DM,作DF⊥x轴于F.∵∠PMD=∠PBD,∠DFP=∠PDM,∴△PMD和△FBD相似,∴,∴PD===,DF=3,BD==3,∴PM==,∴△BPD的外接圆的半径=;同理可求出当P点在x轴的负半轴上时,△BPD的外接圆的半径=.14.如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?解:(1)令x2+x﹣=0,解得x1=1,x2=﹣7.∴A(1,0),B(﹣7,0).由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);(2)证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90°,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴=,∵D(﹣3,﹣2),∴D1D=2,OD1=3,∵AC=CF,CO⊥AF∴OF=OA=1∴D1F=D1O﹣OF=3﹣1=2,∴=,∴OC=,∴CA=CF=FA=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∵△CAD绕点C顺时针旋转得到△CFE,∴∠ECF=∠AFC=60°,∴EC∥BF,∵EC=DC==6,∵BF=6,∴EC=BF,∴四边形BFCE是平行四边形;(3)∵点P是抛物线上一动点,∴设P点(x,x2+x﹣),①当点P在B点的左侧时,∵△PAM与△DD1A相似,∴或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;当点P在A点的右侧时,∵△PAM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);当点P在AB之间时,∵△PAM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;综上所述,点P的横坐标为﹣11或﹣或﹣;②由①得,这样的点P共有3个.15.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,①求点M的坐标;②在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)①设MB交y轴于点N,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,∴直线BN的解析式为y=x+,联立直线BN和抛物线解析式可得,解得(舍去)或,∴M(﹣,),②∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2,OC=,∵△POC∽△MOB,∴==2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴===2,∵M(﹣,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH=MG=,OH=OG=,∴P(﹣,﹣);综上可知存在满足条件的点P,其坐标为(,)或(﹣,﹣).16.抛物线y=ax2+6x+c过A(2,3),B(4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB,交AC于点E,若满足.求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得△BQP与△ABF相似(P与F为对应点),若存在,直接写出P、Q的坐标及此时△BQP的面积;若不存在,请说明理由.解:(1)根据题意,设抛物线表达式为y=a(x﹣3)2+h.把B(4,3),C(6,﹣5)代入得:,解得:,故抛物线的表达式为:y=﹣(x﹣3)2+4=﹣x2+6x﹣5;(2)设直线AC的表达式为y=kx+n,则,解得:,∴直线AC的表达式为y=﹣2x+7,设点D(m,﹣m2+6m﹣5)(2<m<6),则点E(m,﹣2m+7),∴DE=(﹣m2+6m﹣5)﹣(﹣2m+7)=﹣m2+8m﹣12,如图①,设直线DE与直线AB交于点G,∵AG⊥EG,∴AG=m﹣2,EG=3﹣(﹣2m+7)=2(m﹣2),m﹣2>0,在Rt△AEG中,∴AE=(m﹣2),由,则,解得:m=3.5或2(舍去),则D(,);(3)存在,理由:根据题意得:△ABF为等腰直角三角形,假设存在满足条件的点P、Q,则△BPQ为等腰直角三角形,分三种情况:①若∠BPQ=90°,BP=PQ,如图②,过P作MN∥x轴,过Q作QM⊥MN于M,连接AB,∵∠APB+∠QPA=90°,∠QPA+∠APM=90°,∴∠APB=∠APM,∵∠PAB=∠QMP=90°,PB=PQ,∴△BAP≌△QMP(AAS),∴AB=QM=2,PM=AP=3+2=5,∴P(2,﹣2),Q(﹣3,0);如图③,同理可得:△BAP≌△PMQ(AAS),∴AB=PM=2,AP=MQ=3﹣2=1,∴P(2,2),Q(3,0);②若∠BQP=90°,BQ=PQ,如图④,过点Q作y轴的平行线交BA的延长线于点N,交过点P与x轴的平行线于点M,同理可得:△BNQ≌△QMP(AAS),∴NQ=PM=3,NG=PM﹣AG=3﹣2=1,∴BN=MQ=4+1=5,∴P(2,﹣5),Q(﹣1,0);如图⑤,过点Q作y轴的平行线交AB的延长线于点N,交过点P与x轴的平行线于点M,同理可得:△QNB≌△PMQ(AAS),∴NQ=PM=3,∴P(2,﹣1),Q(5,0),③若∠PBQ=90°,BQ=BP,如图6,过Q作QN⊥AB,交AB的延长线于N,同理可得:△PAB≌△BNQ(AAS),∵AB=2,NQ=3,AB≠NQ∴此时不存在符合条件的P、Q.综上,点P、Q的坐标分别为:(2,﹣2)、(﹣3,0);(2,2)、(3,0);(2,﹣5)、(﹣1,0);(2,﹣1)、(5,0).17.如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①求点Q的坐标(横、纵坐标均用含m的代数式表示)②连接AP,若2AP>OQ,求m的取值范围;③当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于6.解:(1)由以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得==2∵A(4,4),B(3,0)∴A′(8,8),B′(6,0)将O(0,0),A′(8,8),B′(6,0)代入y=ax2+bx+c得解得∴二次函数的解析式为y=x2﹣3x;(2)①∵点P在y=x2﹣3x的图象上,∴n=m2﹣3m,∴P(m,m2﹣3m),设直线OP的解析式为y=kx将点P代入,得mk=m2﹣3m,解得k=m﹣3,∴OP:y=(m﹣3)x∵直线OP与y=x2﹣3x交于点Q∴x2﹣3x=(m﹣3)x,解得x1=0(舍),x2=2m,∴Q(2m,2m2﹣6m)②∵P(m,n)在二次函数y=x2﹣3x的图象上∴n=m2﹣3m∴P(m,m2﹣3m)设直线OP的解析式为y=kx,将点P(m,m2﹣3m)代入函数解析式,得mk=m2﹣3m∴k=m﹣3∴OP的解析是为y=(m﹣3)x∵OP与y=x2﹣3x交于Q点∴解得(不符合题意舍去)∴Q(2m,2m2﹣6m)过点P作PC⊥x轴于点C,过点Q作QD⊥x轴于点D则OC=|m|,PC=|m2﹣3m|,OD=|2m|,QD=|2m2﹣6m|∵==2∴△OCP∽△ODQ∴OQ=2OP∵2AP>OQ∴2AP>2OP,即AP>OP∴>化简,得m2﹣2m﹣4<0,解得1﹣<m<1+,且m≠0;③P(m,m2﹣3m),Q(2m,2m2﹣6m)∵点Q在第一象限,∴,解得m>3由Q(2m,2m2﹣6m),得QQ′的表达式是y=2m2﹣6m∵QQ′交y=x2﹣3x交于点Q′解得(不符合题意,舍)∴Q′(6﹣2m,2m2﹣6m)设OQ′的解析式为y=kx,(6﹣2m)k=2m2﹣6m解得k=﹣m,OQ′的解析式为y=﹣mx,∵OQ′与y=x2﹣3x交于点P′∴﹣mx=x2﹣3x解得x1=0(舍),x2=3﹣m∴P′(3﹣m,m2﹣3m)∵QQ′与y=x2﹣3x交于点P′∴﹣mx=x2﹣3x解得x1=0(舍去),x2=3﹣m∴P′(3﹣m,m2﹣3m)∵QQ′与y=x2﹣3x交于点M、N∴x2﹣3x=2m2﹣6m解得x1=,x2=∵M在N左侧∴M(,2m2﹣6m)N(,2m2﹣6m)∵△Q′P′M∽△QB′N∴∵,化简得m2﹣12m+27=0解得:m1=3(舍),m2=9∴N(12,108),Q(18,108)∴QN=6.故答案为:6.18.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.解:(1)∵点A(1,0),B(0,1)在二次函数y1=kx2+m(k<0)的图象上,∴,∴,∴二次函数解析式为y1=﹣x2+1,∵点A(1,0),D(0,﹣3)在二次函数y2=ax2+b(a>0)的图象上,∴,∴,∴二次函数y2=3x2﹣3;(2)设M(m,﹣m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2﹣3)为第四象限的图形上一点,∴MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,由抛物线的对称性知,若有内接正方形,∴2m=4﹣4m2,∴m=或m=(舍),∵0<<1,∴MM'=∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,①如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,﹣3),∴E(0,﹣),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,﹣1),②如图2,当△DBC∽△ADE时,有∠BDC=∠DAE,,∴,∴AE=,当E在直线AD左侧时,设AE交y轴于P,作EQ⊥AC于Q,∵∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=n,∴PO=3﹣n,PA=n,在Rt△AOP中,PA2=OA2+OP2,∴n2=(3﹣n)2+1,∴n=,∴PA=,PO=,∵AE=,∴PE=,在AEQ中,OP∥EQ,∴,∴OQ=,∵,∴QE=2,∴E(﹣,﹣2),当E'在直线DA右侧时,根据勾股定理得,AE==,∴AE'=∵∠DAE'=∠BDC,∠BDC=∠BDA,∴∠BDA=∠DAE',∴AE'∥OD,∴E'(1,﹣),综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,﹣)或(,﹣1)或(1,﹣)或(﹣,﹣2).19.如图,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过点A,B.(I)求抛物线的解析式;(Ⅱ)M(m,0)为x轴上一个动点,过点M作直线MN垂直于x轴,与直线AB和抛物线分别交于点P、N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”,请直接写出使得M,P,N三点成为“共谐点”的m的值.解:(1)∵y=x+2与x轴交于点A,与y轴交于点B,∴当y=0时,x=3,即A(3,0).∴当x=0时,y=2,即B(0,2).∵抛物线y=x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论