人工智能的竞争优势:走向情境人工智能理论_第1页
人工智能的竞争优势:走向情境人工智能理论_第2页
人工智能的竞争优势:走向情境人工智能理论_第3页
人工智能的竞争优势:走向情境人工智能理论_第4页
人工智能的竞争优势:走向情境人工智能理论_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AcademyofManagementReview

COMPETITIVEADVANTAGESTHROUGHARTIFICIALINTELLIGENCE:TOWARDATHEORYOFSITUATEDAI

Journal:

AcademyofManagementReview

ManuscriptID

AMR-2020-0205-Original.R3

ManuscriptType:

OriginalManuscript

TheoreticalPerspectives:

Resourcebasedview,Knowledge-basedview,Learning,Adaptation,Routines,andKnowledgeManagement

OtherTheoreticalPerspectives:

TopicAreas:

Business-levelresources/capabilities<BusinessandCompetitive

Strategy<BusinessPolicyandStrategy,Knowledgemanagement<StrategicManagementProcess<BusinessPolicyandStrategy,

Technologyevolution<TechnologyandInnovationManagement

OtherTopicAreas:

Abstract:

Howcanfirmsestablishcompetitiveadvantagesusingartificial

intelligence(AI)?AlthoughAIisbeginningtopermeatebusiness

activities,ourunderstandingofhowAIcanbeusedtocreateuniquevalueislimited.Toaddressthisvoid,weintroducetheconceptof

situatedAIandilluminateitsimportanceforestablishingAI-drivencompetitiveadvantages.Thepaperhighlightstheorganizational

activitiesinvolvedinsituatingAI—grounding,bounding,andrecasting.Italsoexplainstheconditionsinwhichthesesituatingactivitiesbetter

enablefirmstodevelopAI-drivencapabilitiesthatarefirm-specific,cost-effective,andappropriateforopportunitiesinthestrategicenvironment.Thus,thispaperprovidesanintegrativeframeworkforconnectinga

firm’sAIpursuitstocompetitiveadvantage.

60

Page1of42AcademyofManagementReview

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

COMPETITIVEADVANTAGETHROUGHARTIFICIALINTELLIGENCE:TOWARDATHEORYOFSITUATEDAI

AyendaKemp

PamplinCollegeofBusiness

VirginiaTechUniversity

ayenda@

Acknowledgments:Iamgratefultotheassociateeditor,AllanAfuah,andtothereviewersfor

theirinsightfulguidanceandsupportthroughouttherevisionprocess.ThispaperhasbenefitedimmenselyfromhelpfulcommentsfrommycolleaguesCynthiaDevers,DeviGnyawali,RichardHunt,AbrahamOshotse,KarenSchnatterly,andMaxStallkamp.

60

AcademyofManagementReviewPage2of42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

COMPETITIVEADVANTAGETHROUGHARTIFICIALINTELLIGENCE:TOWARDATHEORYOFSITUATEDAI

Abstract

Howcanfirmsestablishcompetitiveadvantagesusingartificialintelligence(AI)?AlthoughAIis

beginningtopermeatebusinessactivities,ourunderstandingofhowAIcanbeusedtocreate

uniquevalueislimited.Toaddressthisvoid,weintroducetheconceptofsituatedAIand

illuminateitsimportanceforestablishingAI-drivencompetitiveadvantages.Thepaper

highlightstheorganizationalactivitiesinvolvedinsituatingAI—grounding,bounding,and

recasting.ItalsoexplainstheconditionsinwhichthesesituatingactivitiesbetterenablefirmstodevelopAI-drivencapabilitiesthatarefirm-specific,cost-effective,andappropriatefor

opportunitiesinthestrategicenvironment.Thus,thispaperprovidesanintegrativeframeworkforconnectingafirm’sAIpursuitstocompetitiveadvantage.

60

Page3of42AcademyofManagementReview

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

TheprospectofusingAItoestablishcompetitiveadvantagespresentsatheoreticalpuzzle.

Estimatespredictthatby2033,somewherebetween40and50percentofjobswillbeautomatedusingintelligentalgorithms(Frey&Osborne,2013),reflectingenhancedproductivityandlowercosts.ItisalsopredictedthatAImayleadtonewproducts(Barro&Davenport,2019;

Davenport&Kirby,2015),byallowingfirmstoembedAIintotheirproductsandbyigniting

innovationsinafirm’sproductdevelopmentprocesses(Gregory,Henfridsson,Kaganer,&

Kyriakou,2021;Cockburn,Henderson,&Stern,2019).Despitethispromise,agrowingbodyofresearchhighlightsthatAImaypresentsubstantialstrategicobstacles.AImaybemyopic

(Balasubramanian,Ye,&Xu,2022),incapableofperceivinginterdependencieswithinafirm

(Raisch&Krakowski,2021),andrecalcitranttomanagerialcontrol(Murray,Rhymer,&

Sirmon,2021).ThesefactorssuggestthatusingAItolowercostsandcraftdesirableproducts

maynotbeassimpleaspreviouslysuggested.Inaddition,AIisaformofexplicitknowledge

(Broussard,2018;Shrestha,He,Puranam,&vonKrogh,2021),andresemblesageneral-purposetechnology(Teece,2018).SoevenwhenAIleadstovaluecreationwithinafirm,theactivitiesunderpinningtheseoutcomesmaybereplicablebyafirm’srivals.Thus,whileAIholdspromiseforpromptingcompetitiveadvantages,itisunclearhowthispromisecanberealized.

ThispaperbeginstoresolvethispuzzlebydevelopingatheoryofsituatedAI—AIwhoseagencyiscircumscribedinafirm’sexperiential,structural,andrelationalsystems.Wegroundourframeworkintheorganizationalcapabilitiesliterature,whichholdsthatcompetitive

advantagesemergeprimarilywhenfirmsdeploytheirstrategicassetsusingorganizational

capabilitiesthatareidiosyncratic(Barney,1991),inexpensivetodevelop(Winter,2000),andalignedwiththefirm’sinternalandexternalenvironment(Mahoney&Pandian,1992;Sirmon,Hitt,&Ireland,2007).WearguethatachievingtheseoutcomesismadedifficultbyAI’s

60

AcademyofManagementReviewPage4of42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

propensitytoactwithagency(Murrayetal.,2021),whichmaybecounterproductivewhennotproperlycontextualizedwithinthefirm.WealsoacceptthatuncontextualizedagencymaybeAI’sbaselinestate(Balasubramanianetal.,2022).

Weaddressthestrategiclimitationsofartificialintelligencebyexplaininghowfirmsmay(1)circumscribeAI’sagencyinthefirm’suniqueexperiencesandsystemsand(2)embedthis

transformedAIinthefirm’sorganizationalcapabilitiesthroughthreesituatingactivities:

grounding,bounding,andrecasting.Groundinginvolvesorchestratingwhichexperiencesone’sAIwillbeallowedtolearnfromacrosstheorganization.Boundinginvolveseffortstoshapetheexperiencesanchoringacompetitor’sAI.Recastinginvolvesorchestratingthecontinual

adaptationofalgorithmsandtheirsurroundingroutinestoenhanceAI’salignmentwith

interdependentactivitiesinafirm.Wealsoconsiderhowtechnologicalconstraintsand

environmentaldynamisminfluencethebenefitsofsituatingAI.Thus,thispaperacknowledgesAI’sstrategiclimitationswhileexplaininghowfirmscanovercometheselimitationstobetterrealizeAI’spotentialasanewfoundationforcompetitiveadvantage.

CONCEPTUALBACKGROUNDThePromiseofAIforCompetitiveAdvantage

Artificialintelligence(AI)broadlyreferstomachinesthatcancompletecognitivetasks

previouslypossibleonlyforhumans(Davenport,2018).Whilethereisalonghistoryof

machinesdisplacinghumanworkers,theriseofAIisuniqueinthatmachines,forthefirsttime,can“learn”andperformtheirworkwithagency(Faraj,Pachidi,&Sayegh,2018).Withprevioustechnologies,machinescompletedtheirworkbyfollowingintricateif-thenstatements

programmedbyhumanactors.Themachinehadnoagencytospeakof;itsactionswereadirectreflectionoftheknowledgeofitsprogrammers(Dreyfus&Dreyfus,2005;Norman,2017).In

60

Page5of42AcademyofManagementReview

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

contrast,withAI,thecomputerisprovidedasetofinputdata,alearningobjective,anerror

function,andamathematicalalgorithmforminimizingthaterrorfunction(Chenetal.,2020;

Alpaydin,2016).Armedwiththisbasicdescriptionofaproblem,thecomputerthenlearnsits

own“rules”forlinkingtheinputdatatothedesiredoutcomes.Whatiscriticalabouttheserulesisthattheyarenotcreatedbyhumanactorsand,inmanycases,cannotevenbeexplainedby

humans(Castelvecchi,2016).Thus,AIcanbethoughtofaspossessingadistinctformofagenticrationalitythatincreasinglyallowsmachinestoperformcognitivetasksatalevelequalingor

surpassinghumanperformance(Murrayetal.,2021).

ThepowerofAIhasledmanytobelievethatAIwillrevolutionizeeconomicproductionbymakingfirmsmoreefficientthroughintelligentautomationandbyassistinghumansin

solvingnovelproblemsthatmayleadtovaluecreationthroughthedesignofnewproductsandtheimprovementofoldones(Barro&Davenport,2019;Brynjolfsson&Mitchel,2017;Frey&Osborne,2013).Indeed,wearebeginningtoseeprocessandproductimprovementswithAI

acrossmultipleindustries(Tarafdar,Beath,&Ross,2019).Asoneexample,DBSBankrecentlyimplementedAIthatpredictswith85percentaccuracywhetheranemployeewillleavewithinthreemonths.ThefirmisnowusingAItopoweradigital-onlybankinIndiathatemploys90

percentfeweremployeesthanatraditionalbank(Davenport,2018).Asasecondexample,

fragrancedesignersnowuseAIduringproductdevelopmenttoproduceperfumesthatappealtoconsumersmorethanfragrancescreatedbyhumanexpertsalone(Goodwinetal.,2017).

Despiteimprovementsinoperationsandproductdesign,however,firms’investmentsinAImayfailtomaterializeasprofits.InarecentsurveybytheBostonConsultingGroup,nineoutoftentopmanagersreportedthatAIrepresentsalargebusinessopportunityfortheirfirms

(Ransbothametal.,2019),and43%ofexecutivesreportedhavingimplementedAIintheir

60

AcademyofManagementReviewPage6of42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

organizations.Thereportalsonoted,however,that“mostcompanieshaveahardtimegeneratingvaluewithAI.”Lui,Lee,andNgai(2022)offerempiricalsupportforthisconcern,findingthatmarketspenalizeAIadoptionsatthefirmlevel.Thus,whileAIisbeginningtoleadtoproductandprocessimprovements,firm-levelbenefitsofAI,suchasimprovedmarketperformanceorcompetitiveadvantage,maybemoredifficulttoachieve.

ThreeStrategicLimitationsofAI

Whatexplainsthisdisconnect?WhileexistingtheorydoesnotexplainhowfirmscansystematicallyleverageAItodevelopcompetitiveadvantages,recentresearchshedssomelightonobstaclestodoingso.Weexaminetheseobstaclesfromanorganizationalcapabilities

perspectiveandidentifythreereasonswhyfirmsmaystruggletoestablishcompetitive

advantageswiththeirAIinvestments.WefocusonAI’sgeneric,explicit,andmyopicnature.WhileAIundoubtedlyraisesmanyothernewchallengesforfirms,thesethreelimitationstakeprominenceinourtheoryduetotheiradverseeffectsoncapabilitydevelopment,whichwewillargueiscentraltoestablishingcompetitiveadvantageswithAI.

ThefirststrategicchallengeofAIisitsgenericnature.ThelogicemergingfromanAIalgorithmisgenerallynotuniquetotheuserapplyingthatalgorithm.Instead,itcanbe

“rediscoveredbyanyoneusingthesameprocedure”(Shresthaetal.,2021:4).Forexample,allelsebeingequal,aneuralnetworkalgorithmwillarriveatthesamelogicforconnectingasetofinputstooutputsregardlessofwhetherSpotifyorPandoraoperationalizestheneuralnetwork.ThissuggeststhatAImaydisplaycommonbehavioralpatternsacrosscompetingfirms.This

pointregardingthegenericnatureofAIiscriticalbecauseAIisregardedasageneral-purposetechnologyakintoelectricity,thesteamengine,ortheinternet(Brynjolfsson&Mitchell,2017;Frey&Osborne,2013;Lynch,2017).General-purposetechnologiesarelikelytobewidely

60

Page7of42AcademyofManagementReview

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

adoptedamongcompetingfirms(Bresnahan&Trajtenberg,1995).Asaresult,these

technologiestendtogenerateeconomy-widebenefitsratherthanprivaterents(Bresnahan&Trajtenberg,1995;Teece,2018).Thus,whileAImayhelpafirmtodevelopbetterandcheaperproducts,theex-facieexpectationisthatAIwillhelpafirm’scompetitorstodothesame.

ThesecondstrategiclimitationofAIisthatAImanifestsasaformofexplicitknowledge.AIalgorithms,andthedatathatdrivethem,mustbeavailabletothecomputerintheformof

explicitinstructionsormathematicalformulas(Broussard,2018).Consequently,the

organizationalknowledgethatdrivesafirm’sAIprocessesmaybeextractedfromcyber-attacksandmaybehighlyportableduringemployeeturnover(Tramér,Zhang,Juels,Reiter,&

Ristenpart,2016).Thisobservationisconsistentwiththegeneralideathatexplicitknowledgediffusesrelativelyquicklyacrossorganizationalboundaries,makingitchallengingtobuild

competitiveadvantages(Grant,1996;Nickerson&Zenger,2004).ThischallengeisespeciallysalientforAIbecauseintellectualpropertylawsdonot(currently)allowforpatenting

mathematicalformulasandprocedures(Gaudry&Hayim,2018;Liyange&Berry,2019).Thus,identifyingmechanismsforpreventingthespreadofAIassetsacrossfirmboundariesiscritical.

ThethirdstrategiclimitationofAIismyopia.AIismyopicinthesensethatAI

algorithmslackcontextualawarenessofactivitiesandeventsbeyondthescopeoftheirassignedtasks(Balasubramanianetal.,2022;Dreyfus,2012;Raisch&Krakowski,2020).AsingleAI

algorithmcantypicallyexecuteonlyasmallsubtaskwithinanentireorganizationalroutine

(Davenport,2018).Thus,AI-drivenroutineswillnormallyemploycollectivesofAIalgorithms(see,forexampleKumar,Venugopal,Qiu,&Kumar,2018).Yet,analgorithm’sabilityto

recognizeinterdependenciesbetweenitstaskandothertaskswithinthefirmislimited.Thismayresultinexpensivetechnicalandoperationalfailures(Balasubramanianetal.2022;Dreyfus,

60

AcademyofManagementReviewPage8of42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

2012).Moreover,becauseAIcompletesitstaskwithhighdegreesofagency,managersfinditdifficulttocorrecttheseerrorswhentheyoccur(Murrayetal.,2021).

ArelatedconsequenceofAI’smyopiaisthatAIwilllackasophisticatedunderstandingofafirm’sstrategy.Thus,evenwhenAIbehavesinamannerthatisoptimalforcarryingoutatask,thereisnoguaranteethatthiswillresultinbehaviorthatisappropriateforthekindsof

marketopportunitiesafirmispursuing(orshouldbepursuing)(Balasubramanianetal.,2022).Forinstance,abudgetairlinemaydevelopAIthatcorrectlyidentifiesthatacustomercanpay$2,000forashort-haulflight.Still,thisAImaybeincapableofunderstandingthatmakingsuchanofferisinconsistentwiththefirm’smarketidentityandlow-costproviderstrategy.Inotherwords,theultimatevalueofAItothefirmdependsnotonlyonitstaskeffectivenessbutalsoonitsfitwiththefirm’soverallstrategy.Thus,organizationalmechanismsforovercomingAI’s

myopiaarenecessaryforestablishingcompetitiveadvantages.

Thegeneric,explicit,andmyopicnatureofAIallendangeritsfirm-levelbenefits,butareuniquelydifficulttosurmountbecauseAIisbothamachineandagentic.Forexample,AI’s

genericnatureisakintogeneralhumancapital.Generalhumancapitalcannottypicallyunderlyinterfirmadvantagesbecauseafirm’scompetitorscanusuallyacquireanddeploythat

knowledgeinwaysthatcloselymimicthefocalfirm(Barney&Wright,1998).UnlikewithAI,however,generalhumancapitalisconvertiblewithinafirmthroughsocializationandcanbe

madecontext-specificashumanemployeesengageinrichinformalsocialinteractionswithinthefirm(Coff,1997).ThisoptionisunavailableforAIbecauseitisamachine.Ontheotherhand,AI’scapacitytoactwithagencyremovesthetypicalmodesofcontrollingtechnologyinan

organization.Consider,forexample,thecaseofexpertsystems,whichwereheavilyusedbeforetherecentriseofAI(Cholletetal.,2022).LikeAI,thesesystemsweremyopicbecausethey

60

Page9of42AcademyofManagementReview

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

coulderroneouslyoverlookorganizationalinterdependencies.However,whensuchproblems

arose,theycouldbeaddressedbysupplyingthemachinewithmorerules.ThisoptionisnotasfeasiblewithAI,whichdependmoreondatathanrulesasbehavioralconstraints.Thus,AIaltersthefirm’sknowledgeproductionfunction,makingpathstocompetitiveadvantageelusive.

ConceptualBuildingBlocksforTheorizingAI-drivenCompetitiveAdvantages

WedevelopatheoryofsituatedAItoexplainhowfirmscanovercomethesestrategiclimitationstocraftcompetitiveadvantages.Weuseasourconceptualfoundationsthe

organizationalcapabilitiesliterature(Eggers&Kaplan,2013;Nickerson&Zenger,2004),andtheworkonhumanagency(Emirbayer&Mische,1998;Westphal&Zajac,2013).Webrieflydescribeeachconceptualbuildingblockbelow.

CapabilitiesandCompetitiveAdvantage.Anorganizationalcapabilityisacollectionofroutinesthat,togetherwiththeirimplementinginputflows,conferuponanorganization’s

managementasetofdecisionoptionsforproducingsignificantoutputsofaparticulartype

(Winter,2003).Theorganizationalcapabilitiesperspectiveviewsfirmperformanceasafunctionofsystematicandrandomfactors(Winter,2000).Marketsaremodeledascollectivesof

competingfirmssolvingarelatedproblemundertechnicalandbehavioraluncertainty(Afuah&Tucci,1997;Nickerson&Zenger,2004).Profitsareviewedasephemeralintheabsenceof

competitiveadvantagesgrantingsomefirmsastructuraledgeoverothers(Barney,1986).Andaafirm’sprimaryconcernliesinidentifyingandorchestratingpatternsoforganizationalactivitiesthatcanbereliablyleveragedtocreateandcapturevalue(Winter,2003).

Thecapabilitiesperspectivefocusesonthreecoresourcesofcompetitiveadvantage:

firm-specificity,capabilitydevelopmentcosts,andenvironmentalfit.Firm-specificcapabilitiesarethoseproducedusingco-specializedknowledge,leadingthemtohavegreatervalueinsidea

60

AcademyofManagementReviewPage10of42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

firmthanexternally(Helfat,1994;Mahoney&Pandian,1992).Also,craftingfirm-specific

capabilitiesismorelikelywhenatleastsomeoftheco-specializedknowledgeneededtoproduceordeployacapabilityistacitorsociallycomplex(Grant,1996;King&Zeithaml,2001;

Nickerson&Zenger,2004).Second,becausecraftingcapabilitiesrequiresorganizationaleffortandresources,thecostofdevelopingacapabilitymustnotsupersedethevalueearnedfrom

deployingthecapability(Argyersetal.,2019;Winter,2000).Finally,customersarelikelyto

respondpositivelytoafirm’sofferingsonlywhenthefirm’scapabilitiesareadequatelymatchedtotheirneeds(Sirmonetal.,2007).

Situatedagency.Organizationsactwithagencytoinfluencetheircapabilitiesandthe

environmentsthatbindthem(Gavetti,Helfat,&Marengo,2017;Gavetti&Torras,2021;Nayak,Chia,&Canales,2020).Agencygenerallyinvolvesfreechoicewithconstraints(Emirbayer&Mische,1998;Giddens,1979).Ourbasicargumentisthat,whilefirmscannotalwayslimitAI’sagencydirectly(andmightnotwantto),firmscanbalanceamachine’sagencywithhuman

agency,bystrategicallystructuringthecontextinwhichAImakessenseofproblemsandappliessolutions.Agencyhasthreedimensionsthatinformhowanactor’sbehaviorisconstrainedandhowfreechoicemaymanifest(Emirbayer&Mische,1998).Theiterationaldimensionofagencyinvolvesactionsanchoredinanorganization’spriorexperiences.Thepracticalevaluative

dimensionofagencyconsidersactionanchoredinanorganization’spresentsocialcontext.Theprojectivedimensionofagencyregardsactionsbasedinanactor’sabilitytoreimaginetheir

organization’spresentarrangementstomeetfuturegoals.Agencyisconsideredtobesituatedwhenconstraintsonagencyoriginatepredominantlyinthesamecontextinwhichtheagentacts(Botti,1998;Westphal&Zajac,2013).WebuildonthisworkbyconceptualizingsituatedAIasthetechnologicalanalogofsituatedagency.

60

Page11of42AcademyofManagementReview

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Capabilitydevelopment.WearguethatfirmscansituateAIduringcapability

development.Capabilitydevelopmentinvolvesorchestratingorganizationalactionacrossfour

steps:bundlingstrategicassets,embeddingassetsinroutines,assemblingroutinesascapabilities,andmatchingcapabilitiestoopportunitiesintheenvironment(Collis,1994;Eggers&Kaplan,2013;Sirmonetal.,2007).Withinthescopeofthismodel,wetreatinputdataasthemajor

strategicasset(Gregoryetal.,2021),andwereplacethefocusontraditionalroutinesinpriorcapabilitymodelswithafocusonconjoinedroutines,whichreferto(partially)automated

organizationalroutineswheretheroutine’sdesignandexecutioninvolvesamixofhumanandnonhumanagency(Murrayetal.,2021).

We,therefore,defineanAI-drivencapabilityasacollectionofconjoinedroutineswhich,alongwiththerequiredinputdata,allowafirmtoexecutespecificvaluechainactivitiesina

repeatableandreliablemanner(Gregoryetal.,2021;Helfat&Winter,2011;Winter,2003).OurmodelintroducesthreesituatingactivitiesthatfirmsmayleveragetoorchestratethedevelopmentofAI-drivencapabilities:grounding,bounding,andrecasting.

AcorepartofourtheorizinginvolvesaccountingforhowsituatedAIisadaptedinafirm’sAI-drivencapabilitiesovertime.Therefore,webuildonpriorresearchviewing

organizationaladaptationasincrementallychangingafirm’scorestructuresandstrategies

throughexperimentationandproblem-drivensearch(Ethiraj&Levinthal,2004).Wefocusonthelearningliteraturecenteredonthecognitiveunderpinningsofadaptivecapabilityformation(Gavetti&Levinthal,2000;Tripsas&Gavetti,2000).

Afinalconsiderationadoptedfromtheorganizationalcapabilitiesperspectiveisattentiontodynamisminthefirm’senvironment.Asafirm’sstrategicenvironmentbecomesmore

dynamic,newmarketopportunitiesmayemerge,existingopportunitiesmayevaporate,andthe

60

AcademyofManagementReviewPage12of42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

technologiesandcapabilitiesneededtocaptureopportunitiesevolve(Sirmonetal.,2007;Teece,2007;Tripsas&Gavetti,2000).EnvironmentaldynamismhassignificanceasitrelatestoAI-

drivencapabilitiesbecauseAIshiftstheextenttowhichafirm’sroutinesareresponsivetochange(Balasubramanianetal.,2022;Murrayetal.,2021).We,therefore,considerhowenvironmentaldynamisminfluencesthebenefitsofsituatingAIforcompetitiveadvantage.

AIcharacteristics.OurtheoryisintendedtoaccountforthelargeandgrowingformsofAItechnologies.WefollowthemachinelearningliteraturebycharacterizingAIalgorithms

basedontheirtrainingparadigms(supervisedversusunsupervisedlearning)andtheirdegreeofexplainability.AnAIalgorithmismoreexplainablewhenitiseasierforhumanoperatorsto

describethelogicthroughwhichthealgorithmlinksinputstooutputs(Aryaetal.,2019;Gilpinetal.,2019).Thismayinvolvedescribingwhichfactorsanalgorithmweighsheavilywhen

arrivingatasolutionorprovidingsomeintuitionforhowthealgorithmtreatstheinteractionbetweendifferentfactors(Gilpinetal.,2019;Hendricksetal.,2019).Whilesomealgorithmsallowforahighdegreeoftransparencyregardingtheirinnerworkings,otherAIalgorithmsdonot.Figure1showshowsomestandardAIalgorithmsfitthistaxonomy.

***Figure1abouthere****

ThelearningparadigmtellsushowAIisinstructedtomakeinferencesfromthedata.

Withsupervisedlearning,AIisprovidedwithtrainingdatainwhichthe“rightanswers”fora

problemhavebeenlabeled(Dike,Zhou,Deveerasetty,&Wu,2018;Murphy,2012).Labelsmaybeprovidedbyhumanactorsormaybeinferredusinghumanknowledgeofthedatasource.Forexample,afirmmaytrainAItowritecomputercodebyscanningsiteslikeforuser-providedcodingquestionsandthenusingthehighest-ratedinputasthecorrectanswer.Incontrast,unsupervisedlearningprovidesAIwithdatabutnotwith“ans

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论