版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AcademyofManagementReview
COMPETITIVEADVANTAGESTHROUGHARTIFICIALINTELLIGENCE:TOWARDATHEORYOFSITUATEDAI
Journal:
AcademyofManagementReview
ManuscriptID
AMR-2020-0205-Original.R3
ManuscriptType:
OriginalManuscript
TheoreticalPerspectives:
Resourcebasedview,Knowledge-basedview,Learning,Adaptation,Routines,andKnowledgeManagement
OtherTheoreticalPerspectives:
TopicAreas:
Business-levelresources/capabilities<BusinessandCompetitive
Strategy<BusinessPolicyandStrategy,Knowledgemanagement<StrategicManagementProcess<BusinessPolicyandStrategy,
Technologyevolution<TechnologyandInnovationManagement
OtherTopicAreas:
Abstract:
Howcanfirmsestablishcompetitiveadvantagesusingartificial
intelligence(AI)?AlthoughAIisbeginningtopermeatebusiness
activities,ourunderstandingofhowAIcanbeusedtocreateuniquevalueislimited.Toaddressthisvoid,weintroducetheconceptof
situatedAIandilluminateitsimportanceforestablishingAI-drivencompetitiveadvantages.Thepaperhighlightstheorganizational
activitiesinvolvedinsituatingAI—grounding,bounding,andrecasting.Italsoexplainstheconditionsinwhichthesesituatingactivitiesbetter
enablefirmstodevelopAI-drivencapabilitiesthatarefirm-specific,cost-effective,andappropriateforopportunitiesinthestrategicenvironment.Thus,thispaperprovidesanintegrativeframeworkforconnectinga
firm’sAIpursuitstocompetitiveadvantage.
60
Page1of42AcademyofManagementReview
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
COMPETITIVEADVANTAGETHROUGHARTIFICIALINTELLIGENCE:TOWARDATHEORYOFSITUATEDAI
AyendaKemp
PamplinCollegeofBusiness
VirginiaTechUniversity
ayenda@
Acknowledgments:Iamgratefultotheassociateeditor,AllanAfuah,andtothereviewersfor
theirinsightfulguidanceandsupportthroughouttherevisionprocess.ThispaperhasbenefitedimmenselyfromhelpfulcommentsfrommycolleaguesCynthiaDevers,DeviGnyawali,RichardHunt,AbrahamOshotse,KarenSchnatterly,andMaxStallkamp.
60
AcademyofManagementReviewPage2of42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
COMPETITIVEADVANTAGETHROUGHARTIFICIALINTELLIGENCE:TOWARDATHEORYOFSITUATEDAI
Abstract
Howcanfirmsestablishcompetitiveadvantagesusingartificialintelligence(AI)?AlthoughAIis
beginningtopermeatebusinessactivities,ourunderstandingofhowAIcanbeusedtocreate
uniquevalueislimited.Toaddressthisvoid,weintroducetheconceptofsituatedAIand
illuminateitsimportanceforestablishingAI-drivencompetitiveadvantages.Thepaper
highlightstheorganizationalactivitiesinvolvedinsituatingAI—grounding,bounding,and
recasting.ItalsoexplainstheconditionsinwhichthesesituatingactivitiesbetterenablefirmstodevelopAI-drivencapabilitiesthatarefirm-specific,cost-effective,andappropriatefor
opportunitiesinthestrategicenvironment.Thus,thispaperprovidesanintegrativeframeworkforconnectingafirm’sAIpursuitstocompetitiveadvantage.
60
Page3of42AcademyofManagementReview
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
TheprospectofusingAItoestablishcompetitiveadvantagespresentsatheoreticalpuzzle.
Estimatespredictthatby2033,somewherebetween40and50percentofjobswillbeautomatedusingintelligentalgorithms(Frey&Osborne,2013),reflectingenhancedproductivityandlowercosts.ItisalsopredictedthatAImayleadtonewproducts(Barro&Davenport,2019;
Davenport&Kirby,2015),byallowingfirmstoembedAIintotheirproductsandbyigniting
innovationsinafirm’sproductdevelopmentprocesses(Gregory,Henfridsson,Kaganer,&
Kyriakou,2021;Cockburn,Henderson,&Stern,2019).Despitethispromise,agrowingbodyofresearchhighlightsthatAImaypresentsubstantialstrategicobstacles.AImaybemyopic
(Balasubramanian,Ye,&Xu,2022),incapableofperceivinginterdependencieswithinafirm
(Raisch&Krakowski,2021),andrecalcitranttomanagerialcontrol(Murray,Rhymer,&
Sirmon,2021).ThesefactorssuggestthatusingAItolowercostsandcraftdesirableproducts
maynotbeassimpleaspreviouslysuggested.Inaddition,AIisaformofexplicitknowledge
(Broussard,2018;Shrestha,He,Puranam,&vonKrogh,2021),andresemblesageneral-purposetechnology(Teece,2018).SoevenwhenAIleadstovaluecreationwithinafirm,theactivitiesunderpinningtheseoutcomesmaybereplicablebyafirm’srivals.Thus,whileAIholdspromiseforpromptingcompetitiveadvantages,itisunclearhowthispromisecanberealized.
ThispaperbeginstoresolvethispuzzlebydevelopingatheoryofsituatedAI—AIwhoseagencyiscircumscribedinafirm’sexperiential,structural,andrelationalsystems.Wegroundourframeworkintheorganizationalcapabilitiesliterature,whichholdsthatcompetitive
advantagesemergeprimarilywhenfirmsdeploytheirstrategicassetsusingorganizational
capabilitiesthatareidiosyncratic(Barney,1991),inexpensivetodevelop(Winter,2000),andalignedwiththefirm’sinternalandexternalenvironment(Mahoney&Pandian,1992;Sirmon,Hitt,&Ireland,2007).WearguethatachievingtheseoutcomesismadedifficultbyAI’s
60
AcademyofManagementReviewPage4of42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
propensitytoactwithagency(Murrayetal.,2021),whichmaybecounterproductivewhennotproperlycontextualizedwithinthefirm.WealsoacceptthatuncontextualizedagencymaybeAI’sbaselinestate(Balasubramanianetal.,2022).
Weaddressthestrategiclimitationsofartificialintelligencebyexplaininghowfirmsmay(1)circumscribeAI’sagencyinthefirm’suniqueexperiencesandsystemsand(2)embedthis
transformedAIinthefirm’sorganizationalcapabilitiesthroughthreesituatingactivities:
grounding,bounding,andrecasting.Groundinginvolvesorchestratingwhichexperiencesone’sAIwillbeallowedtolearnfromacrosstheorganization.Boundinginvolveseffortstoshapetheexperiencesanchoringacompetitor’sAI.Recastinginvolvesorchestratingthecontinual
adaptationofalgorithmsandtheirsurroundingroutinestoenhanceAI’salignmentwith
interdependentactivitiesinafirm.Wealsoconsiderhowtechnologicalconstraintsand
environmentaldynamisminfluencethebenefitsofsituatingAI.Thus,thispaperacknowledgesAI’sstrategiclimitationswhileexplaininghowfirmscanovercometheselimitationstobetterrealizeAI’spotentialasanewfoundationforcompetitiveadvantage.
CONCEPTUALBACKGROUNDThePromiseofAIforCompetitiveAdvantage
Artificialintelligence(AI)broadlyreferstomachinesthatcancompletecognitivetasks
previouslypossibleonlyforhumans(Davenport,2018).Whilethereisalonghistoryof
machinesdisplacinghumanworkers,theriseofAIisuniqueinthatmachines,forthefirsttime,can“learn”andperformtheirworkwithagency(Faraj,Pachidi,&Sayegh,2018).Withprevioustechnologies,machinescompletedtheirworkbyfollowingintricateif-thenstatements
programmedbyhumanactors.Themachinehadnoagencytospeakof;itsactionswereadirectreflectionoftheknowledgeofitsprogrammers(Dreyfus&Dreyfus,2005;Norman,2017).In
60
Page5of42AcademyofManagementReview
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
contrast,withAI,thecomputerisprovidedasetofinputdata,alearningobjective,anerror
function,andamathematicalalgorithmforminimizingthaterrorfunction(Chenetal.,2020;
Alpaydin,2016).Armedwiththisbasicdescriptionofaproblem,thecomputerthenlearnsits
own“rules”forlinkingtheinputdatatothedesiredoutcomes.Whatiscriticalabouttheserulesisthattheyarenotcreatedbyhumanactorsand,inmanycases,cannotevenbeexplainedby
humans(Castelvecchi,2016).Thus,AIcanbethoughtofaspossessingadistinctformofagenticrationalitythatincreasinglyallowsmachinestoperformcognitivetasksatalevelequalingor
surpassinghumanperformance(Murrayetal.,2021).
ThepowerofAIhasledmanytobelievethatAIwillrevolutionizeeconomicproductionbymakingfirmsmoreefficientthroughintelligentautomationandbyassistinghumansin
solvingnovelproblemsthatmayleadtovaluecreationthroughthedesignofnewproductsandtheimprovementofoldones(Barro&Davenport,2019;Brynjolfsson&Mitchel,2017;Frey&Osborne,2013).Indeed,wearebeginningtoseeprocessandproductimprovementswithAI
acrossmultipleindustries(Tarafdar,Beath,&Ross,2019).Asoneexample,DBSBankrecentlyimplementedAIthatpredictswith85percentaccuracywhetheranemployeewillleavewithinthreemonths.ThefirmisnowusingAItopoweradigital-onlybankinIndiathatemploys90
percentfeweremployeesthanatraditionalbank(Davenport,2018).Asasecondexample,
fragrancedesignersnowuseAIduringproductdevelopmenttoproduceperfumesthatappealtoconsumersmorethanfragrancescreatedbyhumanexpertsalone(Goodwinetal.,2017).
Despiteimprovementsinoperationsandproductdesign,however,firms’investmentsinAImayfailtomaterializeasprofits.InarecentsurveybytheBostonConsultingGroup,nineoutoftentopmanagersreportedthatAIrepresentsalargebusinessopportunityfortheirfirms
(Ransbothametal.,2019),and43%ofexecutivesreportedhavingimplementedAIintheir
60
AcademyofManagementReviewPage6of42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
organizations.Thereportalsonoted,however,that“mostcompanieshaveahardtimegeneratingvaluewithAI.”Lui,Lee,andNgai(2022)offerempiricalsupportforthisconcern,findingthatmarketspenalizeAIadoptionsatthefirmlevel.Thus,whileAIisbeginningtoleadtoproductandprocessimprovements,firm-levelbenefitsofAI,suchasimprovedmarketperformanceorcompetitiveadvantage,maybemoredifficulttoachieve.
ThreeStrategicLimitationsofAI
Whatexplainsthisdisconnect?WhileexistingtheorydoesnotexplainhowfirmscansystematicallyleverageAItodevelopcompetitiveadvantages,recentresearchshedssomelightonobstaclestodoingso.Weexaminetheseobstaclesfromanorganizationalcapabilities
perspectiveandidentifythreereasonswhyfirmsmaystruggletoestablishcompetitive
advantageswiththeirAIinvestments.WefocusonAI’sgeneric,explicit,andmyopicnature.WhileAIundoubtedlyraisesmanyothernewchallengesforfirms,thesethreelimitationstakeprominenceinourtheoryduetotheiradverseeffectsoncapabilitydevelopment,whichwewillargueiscentraltoestablishingcompetitiveadvantageswithAI.
ThefirststrategicchallengeofAIisitsgenericnature.ThelogicemergingfromanAIalgorithmisgenerallynotuniquetotheuserapplyingthatalgorithm.Instead,itcanbe
“rediscoveredbyanyoneusingthesameprocedure”(Shresthaetal.,2021:4).Forexample,allelsebeingequal,aneuralnetworkalgorithmwillarriveatthesamelogicforconnectingasetofinputstooutputsregardlessofwhetherSpotifyorPandoraoperationalizestheneuralnetwork.ThissuggeststhatAImaydisplaycommonbehavioralpatternsacrosscompetingfirms.This
pointregardingthegenericnatureofAIiscriticalbecauseAIisregardedasageneral-purposetechnologyakintoelectricity,thesteamengine,ortheinternet(Brynjolfsson&Mitchell,2017;Frey&Osborne,2013;Lynch,2017).General-purposetechnologiesarelikelytobewidely
60
Page7of42AcademyofManagementReview
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
adoptedamongcompetingfirms(Bresnahan&Trajtenberg,1995).Asaresult,these
technologiestendtogenerateeconomy-widebenefitsratherthanprivaterents(Bresnahan&Trajtenberg,1995;Teece,2018).Thus,whileAImayhelpafirmtodevelopbetterandcheaperproducts,theex-facieexpectationisthatAIwillhelpafirm’scompetitorstodothesame.
ThesecondstrategiclimitationofAIisthatAImanifestsasaformofexplicitknowledge.AIalgorithms,andthedatathatdrivethem,mustbeavailabletothecomputerintheformof
explicitinstructionsormathematicalformulas(Broussard,2018).Consequently,the
organizationalknowledgethatdrivesafirm’sAIprocessesmaybeextractedfromcyber-attacksandmaybehighlyportableduringemployeeturnover(Tramér,Zhang,Juels,Reiter,&
Ristenpart,2016).Thisobservationisconsistentwiththegeneralideathatexplicitknowledgediffusesrelativelyquicklyacrossorganizationalboundaries,makingitchallengingtobuild
competitiveadvantages(Grant,1996;Nickerson&Zenger,2004).ThischallengeisespeciallysalientforAIbecauseintellectualpropertylawsdonot(currently)allowforpatenting
mathematicalformulasandprocedures(Gaudry&Hayim,2018;Liyange&Berry,2019).Thus,identifyingmechanismsforpreventingthespreadofAIassetsacrossfirmboundariesiscritical.
ThethirdstrategiclimitationofAIismyopia.AIismyopicinthesensethatAI
algorithmslackcontextualawarenessofactivitiesandeventsbeyondthescopeoftheirassignedtasks(Balasubramanianetal.,2022;Dreyfus,2012;Raisch&Krakowski,2020).AsingleAI
algorithmcantypicallyexecuteonlyasmallsubtaskwithinanentireorganizationalroutine
(Davenport,2018).Thus,AI-drivenroutineswillnormallyemploycollectivesofAIalgorithms(see,forexampleKumar,Venugopal,Qiu,&Kumar,2018).Yet,analgorithm’sabilityto
recognizeinterdependenciesbetweenitstaskandothertaskswithinthefirmislimited.Thismayresultinexpensivetechnicalandoperationalfailures(Balasubramanianetal.2022;Dreyfus,
60
AcademyofManagementReviewPage8of42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
2012).Moreover,becauseAIcompletesitstaskwithhighdegreesofagency,managersfinditdifficulttocorrecttheseerrorswhentheyoccur(Murrayetal.,2021).
ArelatedconsequenceofAI’smyopiaisthatAIwilllackasophisticatedunderstandingofafirm’sstrategy.Thus,evenwhenAIbehavesinamannerthatisoptimalforcarryingoutatask,thereisnoguaranteethatthiswillresultinbehaviorthatisappropriateforthekindsof
marketopportunitiesafirmispursuing(orshouldbepursuing)(Balasubramanianetal.,2022).Forinstance,abudgetairlinemaydevelopAIthatcorrectlyidentifiesthatacustomercanpay$2,000forashort-haulflight.Still,thisAImaybeincapableofunderstandingthatmakingsuchanofferisinconsistentwiththefirm’smarketidentityandlow-costproviderstrategy.Inotherwords,theultimatevalueofAItothefirmdependsnotonlyonitstaskeffectivenessbutalsoonitsfitwiththefirm’soverallstrategy.Thus,organizationalmechanismsforovercomingAI’s
myopiaarenecessaryforestablishingcompetitiveadvantages.
Thegeneric,explicit,andmyopicnatureofAIallendangeritsfirm-levelbenefits,butareuniquelydifficulttosurmountbecauseAIisbothamachineandagentic.Forexample,AI’s
genericnatureisakintogeneralhumancapital.Generalhumancapitalcannottypicallyunderlyinterfirmadvantagesbecauseafirm’scompetitorscanusuallyacquireanddeploythat
knowledgeinwaysthatcloselymimicthefocalfirm(Barney&Wright,1998).UnlikewithAI,however,generalhumancapitalisconvertiblewithinafirmthroughsocializationandcanbe
madecontext-specificashumanemployeesengageinrichinformalsocialinteractionswithinthefirm(Coff,1997).ThisoptionisunavailableforAIbecauseitisamachine.Ontheotherhand,AI’scapacitytoactwithagencyremovesthetypicalmodesofcontrollingtechnologyinan
organization.Consider,forexample,thecaseofexpertsystems,whichwereheavilyusedbeforetherecentriseofAI(Cholletetal.,2022).LikeAI,thesesystemsweremyopicbecausethey
60
Page9of42AcademyofManagementReview
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
coulderroneouslyoverlookorganizationalinterdependencies.However,whensuchproblems
arose,theycouldbeaddressedbysupplyingthemachinewithmorerules.ThisoptionisnotasfeasiblewithAI,whichdependmoreondatathanrulesasbehavioralconstraints.Thus,AIaltersthefirm’sknowledgeproductionfunction,makingpathstocompetitiveadvantageelusive.
ConceptualBuildingBlocksforTheorizingAI-drivenCompetitiveAdvantages
WedevelopatheoryofsituatedAItoexplainhowfirmscanovercomethesestrategiclimitationstocraftcompetitiveadvantages.Weuseasourconceptualfoundationsthe
organizationalcapabilitiesliterature(Eggers&Kaplan,2013;Nickerson&Zenger,2004),andtheworkonhumanagency(Emirbayer&Mische,1998;Westphal&Zajac,2013).Webrieflydescribeeachconceptualbuildingblockbelow.
CapabilitiesandCompetitiveAdvantage.Anorganizationalcapabilityisacollectionofroutinesthat,togetherwiththeirimplementinginputflows,conferuponanorganization’s
managementasetofdecisionoptionsforproducingsignificantoutputsofaparticulartype
(Winter,2003).Theorganizationalcapabilitiesperspectiveviewsfirmperformanceasafunctionofsystematicandrandomfactors(Winter,2000).Marketsaremodeledascollectivesof
competingfirmssolvingarelatedproblemundertechnicalandbehavioraluncertainty(Afuah&Tucci,1997;Nickerson&Zenger,2004).Profitsareviewedasephemeralintheabsenceof
competitiveadvantagesgrantingsomefirmsastructuraledgeoverothers(Barney,1986).Andaafirm’sprimaryconcernliesinidentifyingandorchestratingpatternsoforganizationalactivitiesthatcanbereliablyleveragedtocreateandcapturevalue(Winter,2003).
Thecapabilitiesperspectivefocusesonthreecoresourcesofcompetitiveadvantage:
firm-specificity,capabilitydevelopmentcosts,andenvironmentalfit.Firm-specificcapabilitiesarethoseproducedusingco-specializedknowledge,leadingthemtohavegreatervalueinsidea
60
AcademyofManagementReviewPage10of42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
firmthanexternally(Helfat,1994;Mahoney&Pandian,1992).Also,craftingfirm-specific
capabilitiesismorelikelywhenatleastsomeoftheco-specializedknowledgeneededtoproduceordeployacapabilityistacitorsociallycomplex(Grant,1996;King&Zeithaml,2001;
Nickerson&Zenger,2004).Second,becausecraftingcapabilitiesrequiresorganizationaleffortandresources,thecostofdevelopingacapabilitymustnotsupersedethevalueearnedfrom
deployingthecapability(Argyersetal.,2019;Winter,2000).Finally,customersarelikelyto
respondpositivelytoafirm’sofferingsonlywhenthefirm’scapabilitiesareadequatelymatchedtotheirneeds(Sirmonetal.,2007).
Situatedagency.Organizationsactwithagencytoinfluencetheircapabilitiesandthe
environmentsthatbindthem(Gavetti,Helfat,&Marengo,2017;Gavetti&Torras,2021;Nayak,Chia,&Canales,2020).Agencygenerallyinvolvesfreechoicewithconstraints(Emirbayer&Mische,1998;Giddens,1979).Ourbasicargumentisthat,whilefirmscannotalwayslimitAI’sagencydirectly(andmightnotwantto),firmscanbalanceamachine’sagencywithhuman
agency,bystrategicallystructuringthecontextinwhichAImakessenseofproblemsandappliessolutions.Agencyhasthreedimensionsthatinformhowanactor’sbehaviorisconstrainedandhowfreechoicemaymanifest(Emirbayer&Mische,1998).Theiterationaldimensionofagencyinvolvesactionsanchoredinanorganization’spriorexperiences.Thepracticalevaluative
dimensionofagencyconsidersactionanchoredinanorganization’spresentsocialcontext.Theprojectivedimensionofagencyregardsactionsbasedinanactor’sabilitytoreimaginetheir
organization’spresentarrangementstomeetfuturegoals.Agencyisconsideredtobesituatedwhenconstraintsonagencyoriginatepredominantlyinthesamecontextinwhichtheagentacts(Botti,1998;Westphal&Zajac,2013).WebuildonthisworkbyconceptualizingsituatedAIasthetechnologicalanalogofsituatedagency.
60
Page11of42AcademyofManagementReview
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Capabilitydevelopment.WearguethatfirmscansituateAIduringcapability
development.Capabilitydevelopmentinvolvesorchestratingorganizationalactionacrossfour
steps:bundlingstrategicassets,embeddingassetsinroutines,assemblingroutinesascapabilities,andmatchingcapabilitiestoopportunitiesintheenvironment(Collis,1994;Eggers&Kaplan,2013;Sirmonetal.,2007).Withinthescopeofthismodel,wetreatinputdataasthemajor
strategicasset(Gregoryetal.,2021),andwereplacethefocusontraditionalroutinesinpriorcapabilitymodelswithafocusonconjoinedroutines,whichreferto(partially)automated
organizationalroutineswheretheroutine’sdesignandexecutioninvolvesamixofhumanandnonhumanagency(Murrayetal.,2021).
We,therefore,defineanAI-drivencapabilityasacollectionofconjoinedroutineswhich,alongwiththerequiredinputdata,allowafirmtoexecutespecificvaluechainactivitiesina
repeatableandreliablemanner(Gregoryetal.,2021;Helfat&Winter,2011;Winter,2003).OurmodelintroducesthreesituatingactivitiesthatfirmsmayleveragetoorchestratethedevelopmentofAI-drivencapabilities:grounding,bounding,andrecasting.
AcorepartofourtheorizinginvolvesaccountingforhowsituatedAIisadaptedinafirm’sAI-drivencapabilitiesovertime.Therefore,webuildonpriorresearchviewing
organizationaladaptationasincrementallychangingafirm’scorestructuresandstrategies
throughexperimentationandproblem-drivensearch(Ethiraj&Levinthal,2004).Wefocusonthelearningliteraturecenteredonthecognitiveunderpinningsofadaptivecapabilityformation(Gavetti&Levinthal,2000;Tripsas&Gavetti,2000).
Afinalconsiderationadoptedfromtheorganizationalcapabilitiesperspectiveisattentiontodynamisminthefirm’senvironment.Asafirm’sstrategicenvironmentbecomesmore
dynamic,newmarketopportunitiesmayemerge,existingopportunitiesmayevaporate,andthe
60
AcademyofManagementReviewPage12of42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
technologiesandcapabilitiesneededtocaptureopportunitiesevolve(Sirmonetal.,2007;Teece,2007;Tripsas&Gavetti,2000).EnvironmentaldynamismhassignificanceasitrelatestoAI-
drivencapabilitiesbecauseAIshiftstheextenttowhichafirm’sroutinesareresponsivetochange(Balasubramanianetal.,2022;Murrayetal.,2021).We,therefore,considerhowenvironmentaldynamisminfluencesthebenefitsofsituatingAIforcompetitiveadvantage.
AIcharacteristics.OurtheoryisintendedtoaccountforthelargeandgrowingformsofAItechnologies.WefollowthemachinelearningliteraturebycharacterizingAIalgorithms
basedontheirtrainingparadigms(supervisedversusunsupervisedlearning)andtheirdegreeofexplainability.AnAIalgorithmismoreexplainablewhenitiseasierforhumanoperatorsto
describethelogicthroughwhichthealgorithmlinksinputstooutputs(Aryaetal.,2019;Gilpinetal.,2019).Thismayinvolvedescribingwhichfactorsanalgorithmweighsheavilywhen
arrivingatasolutionorprovidingsomeintuitionforhowthealgorithmtreatstheinteractionbetweendifferentfactors(Gilpinetal.,2019;Hendricksetal.,2019).Whilesomealgorithmsallowforahighdegreeoftransparencyregardingtheirinnerworkings,otherAIalgorithmsdonot.Figure1showshowsomestandardAIalgorithmsfitthistaxonomy.
***Figure1abouthere****
ThelearningparadigmtellsushowAIisinstructedtomakeinferencesfromthedata.
Withsupervisedlearning,AIisprovidedwithtrainingdatainwhichthe“rightanswers”fora
problemhavebeenlabeled(Dike,Zhou,Deveerasetty,&Wu,2018;Murphy,2012).Labelsmaybeprovidedbyhumanactorsormaybeinferredusinghumanknowledgeofthedatasource.Forexample,afirmmaytrainAItowritecomputercodebyscanningsiteslikeforuser-providedcodingquestionsandthenusingthehighest-ratedinputasthecorrectanswer.Incontrast,unsupervisedlearningprovidesAIwithdatabutnotwith“ans
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度照明设备出口贸易合同
- 保洁服务合同书范本
- 大连2024年度二手房装修设计合同
- 二零二四年度房地产广告发布合同
- 第六单元重点01 字音字形及文学常识(原卷版)
- 2024年度大数据服务中心运营协议
- 2024年度食品加工与原材料供应合同2篇
- 2024年度飞机库防水施工及材料供应合同
- 二零二四年度车库买卖合同的修改与完善
- 2024年度二手房屋出售咨询服务合同
- 第六章 1弯曲变形课件
- 先进生产(工作者)申-报-表
- 《师生情谊》的主题班会
- 第三单元名著导读《红星照耀中国》领袖人物和红军将领的革命之路课件(共39张)语文八年级上册
- 小学几何解题全套43大定理
- 《创新创业基础-理论、案例与训练》教案 第8课 市场调查与分析目标市场
- 二级学院就业实施方案
- 特种设备事故隐患台账
- 青年教师及骨干教师培养方案
- 工业产品质量安全风险管控清单
- 七年级数学上册专题5.9 期末真题重组培优卷(人教版)(原卷版)
评论
0/150
提交评论