




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EUROPEANCENTRALBANK
EUROSYSTEM
LorenzEmter,AfonsoS.Moura,RalphSetzer,NicoZorell
WorkingPaperSeries
Monetarypolicyandgrowth-at-risk:theroleofinstitutionalquality
No2989
Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.
ECBWorkingPaperSeriesNo29891
Abstract
Thispaperanalyseshowcountry-specificinstitutionalqualityshapestheimpactofmon-
etarypolicyondownsideriskstoGDPgrowthintheeuroarea.Usingidentifiedhigh-frequencyshocksinagrowth-at-riskframework,weshowthatmonetarypolicyhasahigherimpactondownsiderisksintheshorttermthaninthemediumterm.However,thisresultfortheeuroareaaveragehidessignificantheterogeneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstan-tiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Thissuggeststhatimprove-mentsininstitutionalqualitycouldsignificantlyenhanceeuroareacountries’economicresilienceandsupportthesmoothtransmissionofmonetarypolicy.
Keywords:Euroarea,growth-at-risk,institutionalquality,monetarypolicytransmissionJELClassification:C23,E52,F45,G28,O43
ECBWorkingPaperSeriesNo29892
Non-technicalsummary
25yearsaftertheintroductionoftheeuro,theeuroareacountriesarestillheterogeneousintermsofeconomicstructures.Thisisparticularlyevidentinstandardindicatorsofinstitu-tionalquality,suchastheWorldBank’sWorldGovernanceIndicators.Whilesomeeuroareacountriesareclosetotheglobalfrontier,othersarelagging.
Itiswidelyrecognisedthatcross-countrydifferencesininstitutionsandothereconomicstructureshaveimportantimplicationsforthetransmissionoftheECB’smonetarypolicy.Inparticular,structuralheterogeneitycancontributetocross-countrydifferencesintheresponsesofoutputandinflationtomonetarypolicychanges.This,inturn,maycontributetorealornominaldivergences,makingitlesslikelythatthecommonmonetarypolicyisalignedwitheconomicconditionsineachindividualeuroareacountry.
Inthispaper,weexploreifdifferencesininstitutionalqualityacrosseuroareacountriesalsomatterfortailrisksintheaftermathofmonetarypolicyshocks.Whenpolicymakersconsidertheimpactofmonetarypolicychangesonfutureeconomicactivity,theytypicallyfocusonthemostlikelyscenario,i.e.themeanofthe(conditional)distributionoffutureGDPgrowth.However,centralbanksalsoincreasinglyanalysetherisksaroundthecentralprojectioninquantitativeterms.Againstthisbackdrop,ourpaperaimstoshedlightontheroleofinstitutionalfactorsinshapingdownsideriskstoGDPgrowthintheaftermathofmonetarypolicyshocksinaheterogeneousmonetaryunion.
Weusethegrowth-at-riskframeworkproposedby
Adrian,BoyarchenkoandGiannone
(2019)toestimatedownsideriskstofutureGDPgrowthwithpanelquantileregressions
.Inlinewiththeliterature,wedefinegrowth-at-riskasthelowestdecileofthedistributionofpredictedGDPgrowth.Toestimatetheimpactofmonetarypolicyshocksongrowth-at-risk,wefollowthemethodproposedby
Loria,MatthesandZhang
(2024)
.Wesplitoursampleintoeuroareacountrieswithhigherandlowerinstitutionalquality,respectively,asmeasuredbytheWorldGovernanceIndicators.
WefindthatmonetarypolicyhasahigherimpactondownsideriskstoGDPgrowthintheshorttermthaninthemediumterm.However,thishidessignificantheterogeneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstantiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Interestingly,expansionarymon-etarypolicyshockshaveamilderandmoresymmetricimpactthancontractionaryshocks,bothacrosscountriesandquantilesoftheconditionalgrowthdistribution.Wheninspectingthetransmissionchannels,wefindthatmedium-termrisksincreasethroughtheimpactofmonetarypolicyshocksonmacro-financialvulnerabilities,inparticularincountrieswithlowinstitutionalquality.
Theseresultshaveimportantpolicyimplications.First,ourempiricalfindingssuggestthatimprovinginstitutionalqualitycanstrengthentheeconomicresilienceofeuroareacoun-tries.Insofar,wecomplementexistingstudiesthatemphasisetheroleofbankcapitalisation,macroprudentialmeasuresormonetarypolicyinstrumentsinsteeringgrowth-at-risk.Sec-ond,ourfindingsindicatethatupwardinstitutionalconvergencewouldsupportthesmooth
ECBWorkingPaperSeriesNo29893
transmissionofmonetarypolicyintheeuroareabyensuringalesspronouncedandmorehomogeneousresponseofmedium-termgrowth-at-risktomonetarypolicytightening.
ECBWorkingPaperSeriesNo29894
1Introduction
25yearsaftertheintroductionoftheeuro,theeuroareacountriesarestillheterogeneousintermsofeconomicstructures.Thisisparticularlyevidentinstandardindicatorsofinsti-tutionalquality,suchastheWorldBank’sWorldGovernanceIndicators(WGI).Whilesomeeuroareacountriesareclosetotheglobalfrontier,othersarelagging.
Itiswidelyrecognisedthatcross-countrydifferencesininstitutionsandothereconomicstructureshaveimportantimplicationsforthetransmissionoftheECB’smonetarypolicy.Inparticular,structuralheterogeneitycancontributetocross-countrydifferencesinthere-sponsesofoutputandinflationtomonetarypolicydecisions(
Barigozzi,ContiandLuciani,
2014;
Ciccarelli,MaddaloniandPeydró,
2013;
Corsetti,DuarteandMann,
2022;
Slacalek,Tris-
taniandViolante,
2020
)
.1
Forinstance,economieswithstronginstitutionalqualityarelikelytobelessdependentonshort-termfinancialinflowsfromabroadandmaythereforebelessvulnerabletotighteningfinancialconditionsthancountrieswithweakerinstitutionalback-grounds.Suchcross-countryheterogeneitymaycontributetorealornominaldivergences,makingitlesslikelythatthecommonmonetarypolicyisalignedwitheconomicconditionsineachindividualeuroareacountry.
Inthispaper,weexploreifdifferencesininstitutionalqualityacrosseuroareacountriesalsomatterfortailrisksintheaftermathofmonetarypolicyshocks.Whenpolicymakersconsidertheimpactofmonetarypolicychangesonfutureeconomicactivity,theytypicallyfocusonthemostlikelyscenario,i.e.themeanofthe(conditional)distributionoffutureGDPgrowth.However,centralbanksalsoincreasinglyanalysetherisksaroundthecentralprojectioninquantitativeterms.Againstthisbackdrop,ourpaperaimstoshedlightontheroleofinstitutionalfactorsinshapingdownsideriskstoGDPgrowthintheaftermathofmonetarypolicyshocksinaheterogeneousmonetaryunion.
TocapturedownsideriskstofutureGDPgrowth,weusethegrowth-at-risk(GaR)frame-workproposedby
Adrian,BoyarchenkoandGiannone
(2019)
.Inlinewiththeliterature(see,e.g.,
FigueresandJaroci´nski
(2020)and
Gächter,GeigerandHasler
(2023)),wedefineGaRas
thelowestdecileofthedistributionofpredictedGDPgrowth,foragiventimehorizon,con-ditionalonasetofcurrenteconomicandfinancialconditions.OurGaRmeasureisderivedfromapanelquantileregression,usingtheestimatordevelopedby
MachadoandSantosSilva
(2019)
.Thesamplecoversall20euroareacountriesovertheperiod1999Q1-2019Q4.
Inasecondstep,weestimatethecausalimpactofmonetarypolicyshocksonGaRfol-lowingthemethodproposedby
Loria,MatthesandZhang
(2024)
.2
Monetarypolicyshocksareconstructedbasedonhigh-frequencymovementsinassetpricesaroundECBpolicyan-nouncementsandcleanedfromcentralbankinformationeffects(
Gürkaynak,SackandSwan-
1Takingabroaderperspective,Sondermann(2018)showsthattheoutputlosssufferedbyeuroareacountries
withweakereconomicstructuresinresponsetoacommonshock(notnecessarilyamonetarypolicyshock)ison
averagetwiceaslargeastheoutputlossofthebestperformers.
2WhiletheGaRliteraturetypicallydoesnotidentifythecausalimpactofstructuralshocksonGaR,Loria,
MatthesandZhang(2024)showthatcontractionaryUSmonetarypolicyshocksareamongthestructuralshocks
whichdisproportionatelyincreasetheriskoflargedownturnsintheUnitedStates.Beuteletal.(2022)showthat
theseshockscauseelevateddownsideriskstogrowtharoundtheworld.Wefollowthisapproachandestablish
causalitybetweenmonetarypolicyshocksandGaRintheeuroarea.
ECBWorkingPaperSeriesNo29895
son
(2005);
Altavillaetal.
(2019);
Jaroci´nskiandKaradi
(2020))
.WeusetheWorldBank’sWGIdata(
KaufmannandKraay,
2023)tosplitthesampleintoeuroareacountrieswithweakerand
strongerinstitutionalquality,respectively.ThisallowsustostudydifferencesintheimpulseresponsesofGaRtomonetarypolicyshocksbetweenthesetwocountrygroups.
WefindthatmonetarypolicyhasahigherimpactondownsideriskstoGDPgrowthintheshorttermthaninthemediumterm.However,thisaggregateresulthidessignificanthetero-geneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstantiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Interestingly,expansionarymonetarypolicyshockshaveamoresymmetricimpactthancontractionaryshocks,bothacrosscountriesandquantilesoftheconditionalgrowthdistribution.
Inspectingthetransmissionchannels,wefindthatmedium-termrisksincreasethroughtheimpactthatmonetarypolicyshockshaveonvariablescapturingmacro-financialvulner-abilities—andthischannelismuchmorepronouncedforcountrieswithlowinstitutionalquality.Ourmainresultsarerobustto(i)usingdifferentindicatorscapturingmedium-termriskstoGDPgrowthwhenestimatingGaR,(ii)employingdifferentindicatorsofinstitutionalquality,(iii)accountingforcross-countrydifferencesinincomelevelsand(iv)alteringeitherthecountriesorthetimeperiodcoveredinthesample.
Ourresultshaveimportantpolicyimplications.First,ourempiricalfindingssuggestthatimprovinginstitutionalqualitycanstrengthentheeconomicresilienceofeuroareacountries.Insofar,wecomplementexistingstudiesthatemphasisetheroleofbankcapitalisation(
Aik-
manetal.,
2021),macroprudentialmeasuresormonetarypolicyinstruments(Galán,
2024)
insteeringGaR.Second,ourfindingsindicatethatinstitutionalconvergencewouldsupportthesmoothtransmissionofmonetarypolicybyensuringamorehomogeneousresponseofthetailofthemedium-termgrowthdistributiontomonetarypolicytightening.Thisaddsanimportantdimensiontothediscussionoffinancialstabilityconsiderationsintheconductofmonetarypolicy(
Bochmannetal.,
2023
).
Theremainderofthepaperisstructuredasfollows.Section
2
outlinesthemethodologyemployedtoestimateGaRandpresentstheresultingestimates.InSection
3
,wecomputeimpulseresponsesoftheGaRmeasurestomonetarypolicyshocksandexploretheroleofinstitutionalqualityinexplainingthecross-countryheterogeneityintheseimpulseresponses.Section
4
providesanoverviewofourrobustnesschecksandSection
5
concludes.
2Growth-at-riskandmacro-financialvulnerabilities
WestartouranalysisbyestimatingGaRoverdifferenttimehorizonsinasampleofeuroareacountries.Thisexerciseillustratestherelativeimportanceofdifferentmacro-financialvariablesfordownsideriskstogrowth,dependingonthetimehorizonconsidered.Weshowthatshort-termGaRestimatesforeuroareacountriesaremostlyassociatedwithfinancialstressindicators,whilemedium-termriskstogrowtharenotstronglycorrelatedwithcurrentfinancialstress.Instead,onlymacrovulnerabilitiesmatterformedium-termGaR.Ourfind-ingsthuspointtotwodifferentchannelsthroughwhichdownsideriskstoGDPgrowthmay
ECBWorkingPaperSeriesNo29896
materialise.
Buildingonourfirst-stageregression,Section
3
willexploretheroleofinstitutionalqualityindeterminingtheresponseofGaRtomonetarypolicyshocks.Thistwo-stepapproach,asfurtherexplainedinmoredetailinSection
3
,enablesustofocusontheeffectsofmonetarypolicythataretransmittedviatheconditioningvariablesinourfirst-stageregression.ThemethodologytherebyallowsustoidentifythechannelsthroughwhichinstitutionalfactorsshapetheimpactofmonetarypolicyonGaR.
2.1Methodologyanddata
Following
Adrianetal.
(2022),weestimatepanelquantileregressionsmakinguseoflocal
projectionmethods(
Jordà,
2005)sothatweareabletoestimatetheconditionalforecastof
GDPgrowthbothfortheshortterm(definedas4quartersahead)andthemediumandlongerterm(8and12quartersahead,respectively).Toestimateourmodel,wefollow
Machadoand
SantosSilva
(2019)whoderiveanestimatorofconditionalquantilesfromthecombinationof
alocationandascalefunction,whichisparticularlyusefulinapanelsettingwithcountryfixedeffects
.3
Following
MachadoandSantosSilva
(2019),theconditionalpredicteddistributionoffu
-tureGDPgrowth,foragivenquantileofDyi,t+h,willbegivenby
q,t,τ=(Dyi,t+hjxi,t)=i,τ+xi,t,τ∈(0,1).(1)
Inlinewithpreviousstudies(see,e.g.,
FigueresandJaroci´nski
(2020)and
Gächter,Geiger
andHasler
(2023)),weconsiderthe10thpercentileofpredictedGDPgrowthtobeourGaR
measure.WedefineDyit+hastheannualisedaveragegrowthrateofGDPbetweenquarterst
andt+h:Dyi,t+h=
Thevariablesincludedinxi,trefertofinancialstressindicatorsandmacro-financialvulner-abilities,whichhavebeenshowntocontainthemostrelevantinformationformedium-termGaRintheeuroarea(
Lang,RusnákandGreiwe,
2023)
.FinancialstressiscapturedbytheCountryLevelIndexofFinancialStress(CLIFS),introducedby
Duprey,KlausandPeltonen
(2017)basedon
Hollo,KremerandLoDuca
(2012)
.TheCLIFScoversmeasuresofstressinequity,bondandforeignexchangemarketsandtakesco-movementsinthesemarketsegmentsintoaccount.Turningtoindicatorsofmacro-financialvulnerabilities,andascommonintheGaRliterature,weincludeameasureofexcessivecreditgrowthoverthepasttwoyears.ForthatwerelyontheBIScredit-to-GDPgapandcalculateitscumulativedeviationoverthepre-vious8quartersfromitslong-runtrend.BoththeCLIFSandthecumulativedeviationfromthetrendofthecredit-to-GDPgaparestandardisedbytheircountry-specificstandarddevia-tions.Wealsoincludethegrowthrateinhousepricesoverthepast8quarters.Inaddition,tocapturebothpublicandexternalsectorvulnerabilitiesweincludethecyclically-adjustedbud-
3Thisapproachallowsthecountryfixedeffectstovaryacrossquantiles,suchthatαi,τ三αi+δiq(τ).Thiscontrasts,forexample,withthemethodproposedby
Canay
(2011)whichrestrictscountryfixedeffectstobe
invariantacrossquantiles.
4ForIreland,weusethemodifieddomesticdemandindicatorreleasedbythenationalstatisticalauthority.ComparedtoGDP,itislessaffectedbydatadistortionsarisingfromtheactivitiesofmultinationalenterprises.
ECBWorkingPaperSeriesNo29897
getbalanceandtheseasonally-adjustedcurrentaccountbalance.Finally,theeffectofoverallcurrenteconomicconditionsonfuturedownsiderisksiscapturedbyincludingeachcountry’sGDPasacontrolvariable,asiscommonintheliterature.
Oursamplecoversalleuroareacountriesinthetimeperiodfrom1999Q1to2019Q4,al-thoughsomevariablesarenotavailableforthefullobservationperiod
.5
GDPgrowthratesarehighlyleft-skewedduringthisperiodacrosscountriesasshowninAppendix
A.1.
Moreover,theunconditionallowerpercentilesofGDPgrowthshowsubstantialheterogeneityacrosscountries,muchmoresothanthemedianoftheunconditionalGDPgrowthdistribution(Fig-ure
8
).Inotherwords,someeuroareacountriesappeartobemoresusceptibletoweakgrowthoutcomesthanothers.Thisisdespitethefactthattheeuroareacountrieshavebeensubjecttoanumberofcommonshocksoverthisperiod.Thecross-countryheterogeneitythussuggestsaroleforcountrycharacteristicsinexacerbatingdownsideriskstogrowth.
2.2GaRestimates
WestartdocumentingourresultsbyshowingGaRestimatesfordifferenttimehorizons,to-getherwiththetimeseriesoftheircross-countryaverages
.6
Figure
1
suggeststhat,inlinewith
Adrian,BoyarchenkoandGiannone
(2019)and
Adrianetal.
(2022),thepredictedlower
tailofthegrowthdistributionismuchmorevolatilethanhigherquantiles
.7
Thismeansthatdownsideriskstogrowthvarymuchmoreovertimethanupsiderisks.Ourframeworkalsoappearstogiveanearlypredictionofthedownturnsandtroughsoftheglobalfinancialcri-sisin2008.Althoughthe4-quarter-aheadGaRmeasuredoesabetterjobinthisregard(seeAppendix
A.3
),itisstillinterestingthatthemedium-termmodelcansignaltheincreasingprobabilityofadownturnaroundtwoyearsbeforeitmaterialised.
Table
1
presentstheestimatedcoefficientsforthequantileregression,fordifferenttimehorizons
.8
Asnotedabove,ourpreferredmeasureofGaRisthe10thpercentileofpredictedGDPgrowth.Thereisastrongassociationbetweenfinancialconditionsandshort-termriskstogrowth.Atighteningoffinancialconditions,reflectedinanincreaseintheCLIFS,isasignificantpredictoroflargemacroeconomicdownturnsoverafour-quarterhorizon.Thein-formationcontentoffinancialstressregardingriskstogrowthdecreasesoverlongerhorizons(eightandtwelvequarters)reflectingthefactthatfinancialconditionsmayremainbuoyantuntilshortlybeforerisksmaterialise(
IMF,
2017
).Incontrast,incorporatinginformationonthecredit-to-GDPgapdoesnotaddexplanatorypowertoGaRintheshorttermbuthelpstocaptureriskstogrowthoverthemedium-andlonger-term(eightandtwelvequarters).Strongrisesinhouseprices,negativebudgetbalancesandnegativecurrentaccountbalancesalsosignalheightenedtailriskstogrowth,especiallyoverthelongerterm(or,atleast,insim-ilarmagnitudesforshorterandlongerhorizons,asopposedtoCLIFS).Thesefindingsonthe
5InAppendix
A.4.2
weshowthatthecoefficientsdonotsignificantlychangeifweextendthesampletoincludetheCOVID-19periodandthesubsequentyears.
6SeethefootnoteofFigure
1
foranexplanationofhowweobtainthisseries.
7Sinceweareinterestedincross-countryheterogeneityandtheroleofinstitutionalcharacteristicsinthetransmissionofmonetarypolicy,wefocusonmedium-termGaR.Figure
1
showsthecross-countryaverageof8-quarter-aheadGaR.InAppendix
A.3
weshowthesamefigureforothertimehorizons.
8Inappendix
A.4
weshowthatthesecoefficientsareverysimilaracrossasetofdifferentspecifications.Additionally,inappendix
A.2
weshowthecoefficientsforotherquantilesofthedistribution.
ECBWorkingPaperSeriesNo29898
Figure1:Predicted10thpercentile(GaR),medianand90thpercentileof8-quarter-aheadGDPgrowthandrealisedGDPgrowth
%
8
6
4
2
0
-2
-4
-6
-8
-10
-12
10thQuantile50thQuantile90thQuantileRealized
Mean
SD
10thperc.(GaR)-1.081.54Median1.770.88
90thperc.3.900.50
Realized1.932.48
2000q12005q12010q12015q12020q1
Quarter
Notes:Thepredicted8-quarter-ahead10thpercentile,medianand90thpercentileoftheannualisedaveragegrowthrateofGDParethecross-countryaveragesofeachcountryprediction(countryspecificpredictionsareobtainedwiththeestimatesofthepanelmodelofequation
1)
.Onceaveragedbyquarter,theseseriesareshiftedforwardby8quarterssuchthatthetimingofthepredictedgrowthrateandtherealisedoneforagivenquartermatch.
termstructureofGaRareinlinewithpreviousfindingsintheliterature,suchas
Adrianetal.
(2022)andinparticular
Lang,RusnákandGreiwe
(2023)whoshowthatonlymacro-financial
vulnerabilityindicatorsreflectingcreditandassetpriceimbalancescontaininformationaboutmedium-termGaRintheeuroarea.Therefore,weinterpretthisfindingasevidenceoftwokeychannelsbehindshort-termandmedium-termGaR:ashort-termchannelconnectedwithfinancialstressandamedium-termchannellinkedtomacro-financialvulnerabilities.
Itisalsointerestingtoanalysethetimevariationinthecontributionstodownsiderisksfromeachexplanatoryvariable.Figure
2
presentsthecontributionstoGaRfordifferenthori-zons.Figure
2a
illustratesthatweakfinancialandeconomicconditionsmakethelargestcontributiontodownsiderisksintheshort-term.ThereisasignificantcontributionofCLIFSaroundtheglobalfinancialcrisis,asonewouldexpect.However,Figure
2b
showsthatmacroe-conomicvulnerabilitiesweighstronglyonthepredictionofGaRoverlongerhorizons.Inpar-ticular,weakpublicfinancescontributedstronglytothelower10thpercentileofconditionalgrowtharoundthesovereigndebtcrisis.Figure
2c
confirmstheimportanceofmacro-financialvulnerabilitiesforGaRinthelongertermalsooverahorizonof12quarters.Atthesametime,thecontributionoffinancialstresstolonger-termriskstogrowthisnegligible.
ECBWorkingPaperSeriesNo29899
Figure2:AveragecontributionstoGaRforecast,h=4,h=8andh=12quartersahead
PercentagePoints
2
0
-2
-4
-6
-8
2000q12005q12010q12015q12020q1
(a)h=4
PercentagePoints
2
0
-2
-4
2005q1
2000q1
2010q1
2015q1
2020q1
(b)h=8
PercentagePoints
2
0
-2
-4
2000q1
2005q1
2010q1
2015q1
2020q1
二GDP
二CurrentAccount
Credit-to-GDPGapHousePrices
GaR
二CLIFS
BudgetBalance
(c)h=12
Notes:GaRreferstothe10thpercentileofpredictedGDPgrowth.ThepredictedGaRmeasuresplottedarethecross-countryaveragesoftheindividualcountrypredictions(thatwereobtainedusingmodel
1
),netofthecountryfixedeffectandthecoefficientofthedummyforwhenthecountryadoptedtheeuro.
ECBWorkingPaperSeriesNo298910
Table1:QuantileregressioncoefficientsfordifferenthorizonsofGaR
h=4
h=8
h=12
CLIFS
-0.780***
-0.331
-0.176*
(0.339)
(0.429)
(0.136)
GDP
0.318***
0.049
-0.004
(0.158)
(0.195)
(0.054)
Credit-to-GDPGap
-0.255
-0.525*
-0.435***
(0.316)
(0.497)
(0.164)
HousePrices
-0.040*
-0.039
-0.031***
(0.035)
(0.050)
(0.015)
BudgetBalance
0.441***
0.438**
0.314***
(0.175)
(0.262)
(0.088)
CurrentAccount
0.279***
0.228*
0.247***
(0.094)
(0.142)
(0.048)
Observations
1179
1103
1027
Notes:GaRreferstothe10thpercentileofpredictedGDPgrowth.Standarderrorsinparenthesis.Quantileregressionwithcountryfixedeffectsandcontrollingforthetimingofeuroadoption.Starsindicatesignificanceat*p<0.32,**p<0.10,***p<0.05.
3Impactofmonetarypolicyshocksongrowth-at-risk
ThissectionlooksattheimpactofmonetarypolicyshocksonGaRinaheterogeneousmon-etaryunion.Morespecifically,weanalysetheextenttowhichcross-countrydifferencesininstitutionalqualityaffecttheresponseofGaRtoamonetarypolicyshockintheeuroarea.Indoingso,wetrytodisentangletherelevanceoffinancialconditionsandmacroeconomicvulnerabilities,respectively,astransmissionchannels.Inaddition,weexplorepossiblenon-linearitiesinthesetransmissionchannelsdependingonwhetherthemonetarypolicyshockiscontractionaryorexpansionary.
3.1Methodologyanddata
Following
Loria,MatthesandZhang
(2024),weassesstheresponseoftheGaRvaluespre
-
dictedinthefirst-stageregression(seeSection
2.1
)tomonetarypolicyshocks.Definingq,t+s,τ
as
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北方工业大学《美国社会与文化》2023-2024学年第二学期期末试卷
- 保定学院《汽车构造与原理》2023-2024学年第二学期期末试卷
- 包头轻工职业技术学院《文学与文化修养》2023-2024学年第二学期期末试卷
- 2025至2031年中国石墨烧结模具行业投资前景及策略咨询研究报告
- 蚌埠经济技术职业学院《社区发展与住房规划》2023-2024学年第二学期期末试卷
- 中科大自考试题及答案
- 中储棉笔试题目及答案
- 分子生物学与个性化医疗的交叉应用-洞察阐释
- 织金会计笔试题目及答案
- 心理健康评估企业制定与实施新质生产力项目商业计划书
- 消毒供应中心进修总结汇报
- 河南省郑州市2021-2022学年高一下学期期末考试英语试卷(含答案)
- BRADEN-压力性损伤评分表及病例
- 物联网环境下精准作物生长监测与预警系统-全面剖析
- 2024-2025湘科版小学科学四年级下册期末考试卷及答案(三套)
- 2025-2030深水采油树行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 高铁动车组运维成本分析-全面剖析
- 2025年中考语文作文文化传承主题作文高分模板(分步详解+例文示范)
- 2025届湖南省高考仿真模拟历史试卷01(解析版)
- 细胞培养技术的基础试题及答案
- 广东省佛山市顺德区2023-2024学年五年级下学期语文期末试卷(含答案)
评论
0/150
提交评论