




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EUROPEANCENTRALBANK
EUROSYSTEM
LorenzEmter,AfonsoS.Moura,RalphSetzer,NicoZorell
WorkingPaperSeries
Monetarypolicyandgrowth-at-risk:theroleofinstitutionalquality
No2989
Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.
ECBWorkingPaperSeriesNo29891
Abstract
Thispaperanalyseshowcountry-specificinstitutionalqualityshapestheimpactofmon-
etarypolicyondownsideriskstoGDPgrowthintheeuroarea.Usingidentifiedhigh-frequencyshocksinagrowth-at-riskframework,weshowthatmonetarypolicyhasahigherimpactondownsiderisksintheshorttermthaninthemediumterm.However,thisresultfortheeuroareaaveragehidessignificantheterogeneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstan-tiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Thissuggeststhatimprove-mentsininstitutionalqualitycouldsignificantlyenhanceeuroareacountries’economicresilienceandsupportthesmoothtransmissionofmonetarypolicy.
Keywords:Euroarea,growth-at-risk,institutionalquality,monetarypolicytransmissionJELClassification:C23,E52,F45,G28,O43
ECBWorkingPaperSeriesNo29892
Non-technicalsummary
25yearsaftertheintroductionoftheeuro,theeuroareacountriesarestillheterogeneousintermsofeconomicstructures.Thisisparticularlyevidentinstandardindicatorsofinstitu-tionalquality,suchastheWorldBank’sWorldGovernanceIndicators.Whilesomeeuroareacountriesareclosetotheglobalfrontier,othersarelagging.
Itiswidelyrecognisedthatcross-countrydifferencesininstitutionsandothereconomicstructureshaveimportantimplicationsforthetransmissionoftheECB’smonetarypolicy.Inparticular,structuralheterogeneitycancontributetocross-countrydifferencesintheresponsesofoutputandinflationtomonetarypolicychanges.This,inturn,maycontributetorealornominaldivergences,makingitlesslikelythatthecommonmonetarypolicyisalignedwitheconomicconditionsineachindividualeuroareacountry.
Inthispaper,weexploreifdifferencesininstitutionalqualityacrosseuroareacountriesalsomatterfortailrisksintheaftermathofmonetarypolicyshocks.Whenpolicymakersconsidertheimpactofmonetarypolicychangesonfutureeconomicactivity,theytypicallyfocusonthemostlikelyscenario,i.e.themeanofthe(conditional)distributionoffutureGDPgrowth.However,centralbanksalsoincreasinglyanalysetherisksaroundthecentralprojectioninquantitativeterms.Againstthisbackdrop,ourpaperaimstoshedlightontheroleofinstitutionalfactorsinshapingdownsideriskstoGDPgrowthintheaftermathofmonetarypolicyshocksinaheterogeneousmonetaryunion.
Weusethegrowth-at-riskframeworkproposedby
Adrian,BoyarchenkoandGiannone
(2019)toestimatedownsideriskstofutureGDPgrowthwithpanelquantileregressions
.Inlinewiththeliterature,wedefinegrowth-at-riskasthelowestdecileofthedistributionofpredictedGDPgrowth.Toestimatetheimpactofmonetarypolicyshocksongrowth-at-risk,wefollowthemethodproposedby
Loria,MatthesandZhang
(2024)
.Wesplitoursampleintoeuroareacountrieswithhigherandlowerinstitutionalquality,respectively,asmeasuredbytheWorldGovernanceIndicators.
WefindthatmonetarypolicyhasahigherimpactondownsideriskstoGDPgrowthintheshorttermthaninthemediumterm.However,thishidessignificantheterogeneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstantiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Interestingly,expansionarymon-etarypolicyshockshaveamilderandmoresymmetricimpactthancontractionaryshocks,bothacrosscountriesandquantilesoftheconditionalgrowthdistribution.Wheninspectingthetransmissionchannels,wefindthatmedium-termrisksincreasethroughtheimpactofmonetarypolicyshocksonmacro-financialvulnerabilities,inparticularincountrieswithlowinstitutionalquality.
Theseresultshaveimportantpolicyimplications.First,ourempiricalfindingssuggestthatimprovinginstitutionalqualitycanstrengthentheeconomicresilienceofeuroareacoun-tries.Insofar,wecomplementexistingstudiesthatemphasisetheroleofbankcapitalisation,macroprudentialmeasuresormonetarypolicyinstrumentsinsteeringgrowth-at-risk.Sec-ond,ourfindingsindicatethatupwardinstitutionalconvergencewouldsupportthesmooth
ECBWorkingPaperSeriesNo29893
transmissionofmonetarypolicyintheeuroareabyensuringalesspronouncedandmorehomogeneousresponseofmedium-termgrowth-at-risktomonetarypolicytightening.
ECBWorkingPaperSeriesNo29894
1Introduction
25yearsaftertheintroductionoftheeuro,theeuroareacountriesarestillheterogeneousintermsofeconomicstructures.Thisisparticularlyevidentinstandardindicatorsofinsti-tutionalquality,suchastheWorldBank’sWorldGovernanceIndicators(WGI).Whilesomeeuroareacountriesareclosetotheglobalfrontier,othersarelagging.
Itiswidelyrecognisedthatcross-countrydifferencesininstitutionsandothereconomicstructureshaveimportantimplicationsforthetransmissionoftheECB’smonetarypolicy.Inparticular,structuralheterogeneitycancontributetocross-countrydifferencesinthere-sponsesofoutputandinflationtomonetarypolicydecisions(
Barigozzi,ContiandLuciani,
2014;
Ciccarelli,MaddaloniandPeydró,
2013;
Corsetti,DuarteandMann,
2022;
Slacalek,Tris-
taniandViolante,
2020
)
.1
Forinstance,economieswithstronginstitutionalqualityarelikelytobelessdependentonshort-termfinancialinflowsfromabroadandmaythereforebelessvulnerabletotighteningfinancialconditionsthancountrieswithweakerinstitutionalback-grounds.Suchcross-countryheterogeneitymaycontributetorealornominaldivergences,makingitlesslikelythatthecommonmonetarypolicyisalignedwitheconomicconditionsineachindividualeuroareacountry.
Inthispaper,weexploreifdifferencesininstitutionalqualityacrosseuroareacountriesalsomatterfortailrisksintheaftermathofmonetarypolicyshocks.Whenpolicymakersconsidertheimpactofmonetarypolicychangesonfutureeconomicactivity,theytypicallyfocusonthemostlikelyscenario,i.e.themeanofthe(conditional)distributionoffutureGDPgrowth.However,centralbanksalsoincreasinglyanalysetherisksaroundthecentralprojectioninquantitativeterms.Againstthisbackdrop,ourpaperaimstoshedlightontheroleofinstitutionalfactorsinshapingdownsideriskstoGDPgrowthintheaftermathofmonetarypolicyshocksinaheterogeneousmonetaryunion.
TocapturedownsideriskstofutureGDPgrowth,weusethegrowth-at-risk(GaR)frame-workproposedby
Adrian,BoyarchenkoandGiannone
(2019)
.Inlinewiththeliterature(see,e.g.,
FigueresandJaroci´nski
(2020)and
Gächter,GeigerandHasler
(2023)),wedefineGaRas
thelowestdecileofthedistributionofpredictedGDPgrowth,foragiventimehorizon,con-ditionalonasetofcurrenteconomicandfinancialconditions.OurGaRmeasureisderivedfromapanelquantileregression,usingtheestimatordevelopedby
MachadoandSantosSilva
(2019)
.Thesamplecoversall20euroareacountriesovertheperiod1999Q1-2019Q4.
Inasecondstep,weestimatethecausalimpactofmonetarypolicyshocksonGaRfol-lowingthemethodproposedby
Loria,MatthesandZhang
(2024)
.2
Monetarypolicyshocksareconstructedbasedonhigh-frequencymovementsinassetpricesaroundECBpolicyan-nouncementsandcleanedfromcentralbankinformationeffects(
Gürkaynak,SackandSwan-
1Takingabroaderperspective,Sondermann(2018)showsthattheoutputlosssufferedbyeuroareacountries
withweakereconomicstructuresinresponsetoacommonshock(notnecessarilyamonetarypolicyshock)ison
averagetwiceaslargeastheoutputlossofthebestperformers.
2WhiletheGaRliteraturetypicallydoesnotidentifythecausalimpactofstructuralshocksonGaR,Loria,
MatthesandZhang(2024)showthatcontractionaryUSmonetarypolicyshocksareamongthestructuralshocks
whichdisproportionatelyincreasetheriskoflargedownturnsintheUnitedStates.Beuteletal.(2022)showthat
theseshockscauseelevateddownsideriskstogrowtharoundtheworld.Wefollowthisapproachandestablish
causalitybetweenmonetarypolicyshocksandGaRintheeuroarea.
ECBWorkingPaperSeriesNo29895
son
(2005);
Altavillaetal.
(2019);
Jaroci´nskiandKaradi
(2020))
.WeusetheWorldBank’sWGIdata(
KaufmannandKraay,
2023)tosplitthesampleintoeuroareacountrieswithweakerand
strongerinstitutionalquality,respectively.ThisallowsustostudydifferencesintheimpulseresponsesofGaRtomonetarypolicyshocksbetweenthesetwocountrygroups.
WefindthatmonetarypolicyhasahigherimpactondownsideriskstoGDPgrowthintheshorttermthaninthemediumterm.However,thisaggregateresulthidessignificanthetero-geneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstantiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Interestingly,expansionarymonetarypolicyshockshaveamoresymmetricimpactthancontractionaryshocks,bothacrosscountriesandquantilesoftheconditionalgrowthdistribution.
Inspectingthetransmissionchannels,wefindthatmedium-termrisksincreasethroughtheimpactthatmonetarypolicyshockshaveonvariablescapturingmacro-financialvulner-abilities—andthischannelismuchmorepronouncedforcountrieswithlowinstitutionalquality.Ourmainresultsarerobustto(i)usingdifferentindicatorscapturingmedium-termriskstoGDPgrowthwhenestimatingGaR,(ii)employingdifferentindicatorsofinstitutionalquality,(iii)accountingforcross-countrydifferencesinincomelevelsand(iv)alteringeitherthecountriesorthetimeperiodcoveredinthesample.
Ourresultshaveimportantpolicyimplications.First,ourempiricalfindingssuggestthatimprovinginstitutionalqualitycanstrengthentheeconomicresilienceofeuroareacountries.Insofar,wecomplementexistingstudiesthatemphasisetheroleofbankcapitalisation(
Aik-
manetal.,
2021),macroprudentialmeasuresormonetarypolicyinstruments(Galán,
2024)
insteeringGaR.Second,ourfindingsindicatethatinstitutionalconvergencewouldsupportthesmoothtransmissionofmonetarypolicybyensuringamorehomogeneousresponseofthetailofthemedium-termgrowthdistributiontomonetarypolicytightening.Thisaddsanimportantdimensiontothediscussionoffinancialstabilityconsiderationsintheconductofmonetarypolicy(
Bochmannetal.,
2023
).
Theremainderofthepaperisstructuredasfollows.Section
2
outlinesthemethodologyemployedtoestimateGaRandpresentstheresultingestimates.InSection
3
,wecomputeimpulseresponsesoftheGaRmeasurestomonetarypolicyshocksandexploretheroleofinstitutionalqualityinexplainingthecross-countryheterogeneityintheseimpulseresponses.Section
4
providesanoverviewofourrobustnesschecksandSection
5
concludes.
2Growth-at-riskandmacro-financialvulnerabilities
WestartouranalysisbyestimatingGaRoverdifferenttimehorizonsinasampleofeuroareacountries.Thisexerciseillustratestherelativeimportanceofdifferentmacro-financialvariablesfordownsideriskstogrowth,dependingonthetimehorizonconsidered.Weshowthatshort-termGaRestimatesforeuroareacountriesaremostlyassociatedwithfinancialstressindicators,whilemedium-termriskstogrowtharenotstronglycorrelatedwithcurrentfinancialstress.Instead,onlymacrovulnerabilitiesmatterformedium-termGaR.Ourfind-ingsthuspointtotwodifferentchannelsthroughwhichdownsideriskstoGDPgrowthmay
ECBWorkingPaperSeriesNo29896
materialise.
Buildingonourfirst-stageregression,Section
3
willexploretheroleofinstitutionalqualityindeterminingtheresponseofGaRtomonetarypolicyshocks.Thistwo-stepapproach,asfurtherexplainedinmoredetailinSection
3
,enablesustofocusontheeffectsofmonetarypolicythataretransmittedviatheconditioningvariablesinourfirst-stageregression.ThemethodologytherebyallowsustoidentifythechannelsthroughwhichinstitutionalfactorsshapetheimpactofmonetarypolicyonGaR.
2.1Methodologyanddata
Following
Adrianetal.
(2022),weestimatepanelquantileregressionsmakinguseoflocal
projectionmethods(
Jordà,
2005)sothatweareabletoestimatetheconditionalforecastof
GDPgrowthbothfortheshortterm(definedas4quartersahead)andthemediumandlongerterm(8and12quartersahead,respectively).Toestimateourmodel,wefollow
Machadoand
SantosSilva
(2019)whoderiveanestimatorofconditionalquantilesfromthecombinationof
alocationandascalefunction,whichisparticularlyusefulinapanelsettingwithcountryfixedeffects
.3
Following
MachadoandSantosSilva
(2019),theconditionalpredicteddistributionoffu
-tureGDPgrowth,foragivenquantileofDyi,t+h,willbegivenby
q,t,τ=(Dyi,t+hjxi,t)=i,τ+xi,t,τ∈(0,1).(1)
Inlinewithpreviousstudies(see,e.g.,
FigueresandJaroci´nski
(2020)and
Gächter,Geiger
andHasler
(2023)),weconsiderthe10thpercentileofpredictedGDPgrowthtobeourGaR
measure.WedefineDyit+hastheannualisedaveragegrowthrateofGDPbetweenquarterst
andt+h:Dyi,t+h=
Thevariablesincludedinxi,trefertofinancialstressindicatorsandmacro-financialvulner-abilities,whichhavebeenshowntocontainthemostrelevantinformationformedium-termGaRintheeuroarea(
Lang,RusnákandGreiwe,
2023)
.FinancialstressiscapturedbytheCountryLevelIndexofFinancialStress(CLIFS),introducedby
Duprey,KlausandPeltonen
(2017)basedon
Hollo,KremerandLoDuca
(2012)
.TheCLIFScoversmeasuresofstressinequity,bondandforeignexchangemarketsandtakesco-movementsinthesemarketsegmentsintoaccount.Turningtoindicatorsofmacro-financialvulnerabilities,andascommonintheGaRliterature,weincludeameasureofexcessivecreditgrowthoverthepasttwoyears.ForthatwerelyontheBIScredit-to-GDPgapandcalculateitscumulativedeviationoverthepre-vious8quartersfromitslong-runtrend.BoththeCLIFSandthecumulativedeviationfromthetrendofthecredit-to-GDPgaparestandardisedbytheircountry-specificstandarddevia-tions.Wealsoincludethegrowthrateinhousepricesoverthepast8quarters.Inaddition,tocapturebothpublicandexternalsectorvulnerabilitiesweincludethecyclically-adjustedbud-
3Thisapproachallowsthecountryfixedeffectstovaryacrossquantiles,suchthatαi,τ三αi+δiq(τ).Thiscontrasts,forexample,withthemethodproposedby
Canay
(2011)whichrestrictscountryfixedeffectstobe
invariantacrossquantiles.
4ForIreland,weusethemodifieddomesticdemandindicatorreleasedbythenationalstatisticalauthority.ComparedtoGDP,itislessaffectedbydatadistortionsarisingfromtheactivitiesofmultinationalenterprises.
ECBWorkingPaperSeriesNo29897
getbalanceandtheseasonally-adjustedcurrentaccountbalance.Finally,theeffectofoverallcurrenteconomicconditionsonfuturedownsiderisksiscapturedbyincludingeachcountry’sGDPasacontrolvariable,asiscommonintheliterature.
Oursamplecoversalleuroareacountriesinthetimeperiodfrom1999Q1to2019Q4,al-thoughsomevariablesarenotavailableforthefullobservationperiod
.5
GDPgrowthratesarehighlyleft-skewedduringthisperiodacrosscountriesasshowninAppendix
A.1.
Moreover,theunconditionallowerpercentilesofGDPgrowthshowsubstantialheterogeneityacrosscountries,muchmoresothanthemedianoftheunconditionalGDPgrowthdistribution(Fig-ure
8
).Inotherwords,someeuroareacountriesappeartobemoresusceptibletoweakgrowthoutcomesthanothers.Thisisdespitethefactthattheeuroareacountrieshavebeensubjecttoanumberofcommonshocksoverthisperiod.Thecross-countryheterogeneitythussuggestsaroleforcountrycharacteristicsinexacerbatingdownsideriskstogrowth.
2.2GaRestimates
WestartdocumentingourresultsbyshowingGaRestimatesfordifferenttimehorizons,to-getherwiththetimeseriesoftheircross-countryaverages
.6
Figure
1
suggeststhat,inlinewith
Adrian,BoyarchenkoandGiannone
(2019)and
Adrianetal.
(2022),thepredictedlower
tailofthegrowthdistributionismuchmorevolatilethanhigherquantiles
.7
Thismeansthatdownsideriskstogrowthvarymuchmoreovertimethanupsiderisks.Ourframeworkalsoappearstogiveanearlypredictionofthedownturnsandtroughsoftheglobalfinancialcri-sisin2008.Althoughthe4-quarter-aheadGaRmeasuredoesabetterjobinthisregard(seeAppendix
A.3
),itisstillinterestingthatthemedium-termmodelcansignaltheincreasingprobabilityofadownturnaroundtwoyearsbeforeitmaterialised.
Table
1
presentstheestimatedcoefficientsforthequantileregression,fordifferenttimehorizons
.8
Asnotedabove,ourpreferredmeasureofGaRisthe10thpercentileofpredictedGDPgrowth.Thereisastrongassociationbetweenfinancialconditionsandshort-termriskstogrowth.Atighteningoffinancialconditions,reflectedinanincreaseintheCLIFS,isasignificantpredictoroflargemacroeconomicdownturnsoverafour-quarterhorizon.Thein-formationcontentoffinancialstressregardingriskstogrowthdecreasesoverlongerhorizons(eightandtwelvequarters)reflectingthefactthatfinancialconditionsmayremainbuoyantuntilshortlybeforerisksmaterialise(
IMF,
2017
).Incontrast,incorporatinginformationonthecredit-to-GDPgapdoesnotaddexplanatorypowertoGaRintheshorttermbuthelpstocaptureriskstogrowthoverthemedium-andlonger-term(eightandtwelvequarters).Strongrisesinhouseprices,negativebudgetbalancesandnegativecurrentaccountbalancesalsosignalheightenedtailriskstogrowth,especiallyoverthelongerterm(or,atleast,insim-ilarmagnitudesforshorterandlongerhorizons,asopposedtoCLIFS).Thesefindingsonthe
5InAppendix
A.4.2
weshowthatthecoefficientsdonotsignificantlychangeifweextendthesampletoincludetheCOVID-19periodandthesubsequentyears.
6SeethefootnoteofFigure
1
foranexplanationofhowweobtainthisseries.
7Sinceweareinterestedincross-countryheterogeneityandtheroleofinstitutionalcharacteristicsinthetransmissionofmonetarypolicy,wefocusonmedium-termGaR.Figure
1
showsthecross-countryaverageof8-quarter-aheadGaR.InAppendix
A.3
weshowthesamefigureforothertimehorizons.
8Inappendix
A.4
weshowthatthesecoefficientsareverysimilaracrossasetofdifferentspecifications.Additionally,inappendix
A.2
weshowthecoefficientsforotherquantilesofthedistribution.
ECBWorkingPaperSeriesNo29898
Figure1:Predicted10thpercentile(GaR),medianand90thpercentileof8-quarter-aheadGDPgrowthandrealisedGDPgrowth
%
8
6
4
2
0
-2
-4
-6
-8
-10
-12
10thQuantile50thQuantile90thQuantileRealized
Mean
SD
10thperc.(GaR)-1.081.54Median1.770.88
90thperc.3.900.50
Realized1.932.48
2000q12005q12010q12015q12020q1
Quarter
Notes:Thepredicted8-quarter-ahead10thpercentile,medianand90thpercentileoftheannualisedaveragegrowthrateofGDParethecross-countryaveragesofeachcountryprediction(countryspecificpredictionsareobtainedwiththeestimatesofthepanelmodelofequation
1)
.Onceaveragedbyquarter,theseseriesareshiftedforwardby8quarterssuchthatthetimingofthepredictedgrowthrateandtherealisedoneforagivenquartermatch.
termstructureofGaRareinlinewithpreviousfindingsintheliterature,suchas
Adrianetal.
(2022)andinparticular
Lang,RusnákandGreiwe
(2023)whoshowthatonlymacro-financial
vulnerabilityindicatorsreflectingcreditandassetpriceimbalancescontaininformationaboutmedium-termGaRintheeuroarea.Therefore,weinterpretthisfindingasevidenceoftwokeychannelsbehindshort-termandmedium-termGaR:ashort-termchannelconnectedwithfinancialstressandamedium-termchannellinkedtomacro-financialvulnerabilities.
Itisalsointerestingtoanalysethetimevariationinthecontributionstodownsiderisksfromeachexplanatoryvariable.Figure
2
presentsthecontributionstoGaRfordifferenthori-zons.Figure
2a
illustratesthatweakfinancialandeconomicconditionsmakethelargestcontributiontodownsiderisksintheshort-term.ThereisasignificantcontributionofCLIFSaroundtheglobalfinancialcrisis,asonewouldexpect.However,Figure
2b
showsthatmacroe-conomicvulnerabilitiesweighstronglyonthepredictionofGaRoverlongerhorizons.Inpar-ticular,weakpublicfinancescontributedstronglytothelower10thpercentileofconditionalgrowtharoundthesovereigndebtcrisis.Figure
2c
confirmstheimportanceofmacro-financialvulnerabilitiesforGaRinthelongertermalsooverahorizonof12quarters.Atthesametime,thecontributionoffinancialstresstolonger-termriskstogrowthisnegligible.
ECBWorkingPaperSeriesNo29899
Figure2:AveragecontributionstoGaRforecast,h=4,h=8andh=12quartersahead
PercentagePoints
2
0
-2
-4
-6
-8
2000q12005q12010q12015q12020q1
(a)h=4
PercentagePoints
2
0
-2
-4
2005q1
2000q1
2010q1
2015q1
2020q1
(b)h=8
PercentagePoints
2
0
-2
-4
2000q1
2005q1
2010q1
2015q1
2020q1
二GDP
二CurrentAccount
Credit-to-GDPGapHousePrices
GaR
二CLIFS
BudgetBalance
(c)h=12
Notes:GaRreferstothe10thpercentileofpredictedGDPgrowth.ThepredictedGaRmeasuresplottedarethecross-countryaveragesoftheindividualcountrypredictions(thatwereobtainedusingmodel
1
),netofthecountryfixedeffectandthecoefficientofthedummyforwhenthecountryadoptedtheeuro.
ECBWorkingPaperSeriesNo298910
Table1:QuantileregressioncoefficientsfordifferenthorizonsofGaR
h=4
h=8
h=12
CLIFS
-0.780***
-0.331
-0.176*
(0.339)
(0.429)
(0.136)
GDP
0.318***
0.049
-0.004
(0.158)
(0.195)
(0.054)
Credit-to-GDPGap
-0.255
-0.525*
-0.435***
(0.316)
(0.497)
(0.164)
HousePrices
-0.040*
-0.039
-0.031***
(0.035)
(0.050)
(0.015)
BudgetBalance
0.441***
0.438**
0.314***
(0.175)
(0.262)
(0.088)
CurrentAccount
0.279***
0.228*
0.247***
(0.094)
(0.142)
(0.048)
Observations
1179
1103
1027
Notes:GaRreferstothe10thpercentileofpredictedGDPgrowth.Standarderrorsinparenthesis.Quantileregressionwithcountryfixedeffectsandcontrollingforthetimingofeuroadoption.Starsindicatesignificanceat*p<0.32,**p<0.10,***p<0.05.
3Impactofmonetarypolicyshocksongrowth-at-risk
ThissectionlooksattheimpactofmonetarypolicyshocksonGaRinaheterogeneousmon-etaryunion.Morespecifically,weanalysetheextenttowhichcross-countrydifferencesininstitutionalqualityaffecttheresponseofGaRtoamonetarypolicyshockintheeuroarea.Indoingso,wetrytodisentangletherelevanceoffinancialconditionsandmacroeconomicvulnerabilities,respectively,astransmissionchannels.Inaddition,weexplorepossiblenon-linearitiesinthesetransmissionchannelsdependingonwhetherthemonetarypolicyshockiscontractionaryorexpansionary.
3.1Methodologyanddata
Following
Loria,MatthesandZhang
(2024),weassesstheresponseoftheGaRvaluespre
-
dictedinthefirst-stageregression(seeSection
2.1
)tomonetarypolicyshocks.Definingq,t+s,τ
as
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术品交易中介服务协议
- 旅游规划与设计服务合同
- 隧道机械租赁合同
- 项目团队月度工作总结报告书
- 7《一匹出色的马》教学设计-2023-2024学年二年级下册语文统编版
- Unit 1 Family Lesson3(教学设计)-2024-2025学年北师大版(三起)(2024)英语三年级上册
- 第6单元 20陀螺(教学设计)2024-2025学年四年级语文上册同步教学(统编版)
- 西宁高铁u型渠施工方案
- 济宁钢质入户门施工方案
- 北京拼接式蓄水池施工方案
- 院感考核表(门-诊)
- 建筑工程综合评估法Ⅱ评标办法
- 钠离子电池工艺与材料
- 初中语文九年级下册阅读理解50篇附答案解析
- 《陶瓷造型工艺》课程标准
- 火电厂各指标指标解析(最新版)
- 病毒性脑炎患者的护理查房ppt课件
- TPU材料项目可行性研究报告写作参考范文
- 第二编 债权总论
- 试用期考核合格证明表
- 常见八种疾病
评论
0/150
提交评论