版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重难点02三角形中“飞镖”模型【知识梳理】飞镖模型三角形三个内角的和等于180°三角形的外角等子与它不相邻的两个内角的和.【考点剖析】一.选择题(共4小题)1.(2022春•龙岗区校级期中)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°2.(2021春•盐湖区校级期末)如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A.33° B.23° C.27° D.37°3.(2021秋•藁城区校级月考)如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是()A.61° B.60° C.37° D.39°4.(2020春•沙坪坝区校级期中)如图,△ABC中,∠A=30°,D为CB延长线上的一点,DE⊥AB于点E,∠D=40°,则∠C为()A.20° B.15° C.30° D.25°二.填空题(共1小题)5.(2022秋•富阳区期中)如图,作CE⊥AF于点E,CE与BF相交于点D,若∠F=45°,∠C=30°,则∠A=°,∠DBC=°.三.解答题(共11小题)6.(2022春•衡山县期末)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.7.(2022春•乐平市期末)在△ABC中,两条高BD、CE所在的直线相交于点O.(1)当∠BAC为锐角时,如图1,求证:∠BOC+∠BAC=180°.(2)当∠BAC为钝角时,如图2,请在图2中画出相应的图形(用三角尺),并回答(1)中结论是否成立?不需证明.8.(2022•雁塔区模拟)如图,在四边形ABCD中,AB∥CD,点E为对角线BD上一点,且BE=BC,∠F=∠ABD,EF交BC的延长线于点F.求证:FB=DB.9.(2023•太原二模)如图,在凹四边形ABCD中,∠A=45°,∠B=55°,∠D=20°,求∠BCD的度数.下面是学习小组的同学们交流时得到的解决问题的三种方法:方法一:作射线AC;方法二:延长BC交AD于点E;方法三:连接BD.请选择上述一种方法,求∠BCD的度数.10.(2023•兴庆区校级模拟)问题提出(1)如图①,已知∠AOB,以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部交于点C,画射线OC,连接CM,CN,MN,则图①中与△OMC全等的是;问题探究(2)如图②,在△ABC中,AD平分∠BAC,过点D作DM⊥AB于点M,连接CD,BD,若AB+AC=2AM,求证:∠ACD+∠ABD=180°;问题解决(3)如图③,工人刘师傅有一块三角形铁板ABC,∠B=60°,他需要利用铁板的边角裁出一个四边形BEFD,并要求∠EFD=120°,EF=DF.刘师傅先在纸稿上画出了三角形铁板的草图,再用尺规作出∠BAC的平分线AD交BC于点D,作∠BCA的平分线CE交AB于点E,AD,CE交于点F,得到四边形BEFD.请问,若按上述作法,裁得的四边形BEFD是否符合要求?请证明你的结论.11.(2020秋•金州区校级期末)如图,BD,CE是△ABC的高,若AE=3,AD=4,CD=1.求EB的长.12.(2021秋•安宁市校级期中)如图,求证:∠BDC=∠A+∠B+∠C.13.(2020春•如东县期末)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=54°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=α,∠DBE=β,请直接写出∠DCE的度数(用含α和β的式子表示);③如图4,∠ABD,∠ACD的12等分线相交于点G1、G2…、G11,若∠BDC=115°,∠BG1C=60°,求∠A的度数.14.(2021秋•东源县校级期末)如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,请发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,直接写出∠ABX+∠ACX的结果;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2、…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.15.(2022秋•盐湖区期末)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.16.(2023春•黑山县期中)如图:直线CD是经过∠ACB顶点C的一条直线,AC=CB,E、F分别是直线CD上两点,且∠AEC=∠CFB=∠α.【数学思考】(1)若直线CD是经过∠ACB的内部,且E、F在射线CD上.请解决下面两个问题:①如图1,∠ACB=90°,∠α=90°,则AECF(填>,<或=),猜测线段EF与线段AE、BF的数量关系,并证明你的猜想;②如图2,若0°<∠ACB<90°,当∠ACB与∠α之间满足时,能够使得①中的结论仍然成立,并证明两个结论.【问题拓展】(2)如图3.若直线CD经过∠ACB的外部,∠ACB=∠α,请直接写出EF、AE、BF三条线段的数量关系.【过关检测】一.选择题1.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A.33° B.23° C.27° D.37°2.(2022秋·八年级课时练习)如图所示,∠A+∠B+∠C+∠D+∠E的结果为(
)A.90° B.360° C.180° D.无法确定3.(2022秋·八年级课时练习)如图,已知在中,,现将一块直角三角板放在上,使三角板的两条直角边分别经过点,直角顶点D落在的内部,则(
).A. B. C. D.4.(2023春·江苏镇江·七年级统考期中)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果,,那么的度数是(
).A. B. C. D.5.(2022秋·八年级课时练习)如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.115° B.120° C.125° D.130°6.(2022秋·全国·八年级专题练习)如图,在三角形纸片ABC中,∠A=60°,∠B=70°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为()A.50° B.118° C.100° D.90°二、填空题7.(2023春·江苏无锡·七年级校考阶段练习)如图,______°.8.(2022秋·青海西宁·八年级青海师大附中校考阶段练习)如图,的度数为_______.9.(2023·全国·八年级假期作业)如图,若,则____________.10.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=.三.解答题11.一个零件的形状如图,按要求∠A=90°,∠B=32°,∠C=21°,检验工人量得∠CDB=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.12.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠B、∠C这4个角之间有怎样的关系,并证明你的结论.13.已知:如图,求证:∠BDC=∠B+∠C+∠BAC.14.(2022秋·八年级课时练习)如图,中,(1)若、的三等分线交于点、,请用表示、;(2)若、的等分线交于点、(、依次从下到上),请用表示,.15.(2023·全国·八年级假期作业)如图,已知分别交的边、于、,交的延长线于,,,,求的度数.16.(2022秋·八年级课时练习)如图,是的平分线,CH是的平分线,与CH交于点,若,,求的度数.17.(2023·全国·八年级假期作业)模型规律:如图1,延长交于点D,则.因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,,则__________;②如图3,__________;(2)拓展应用:①如图4,、的2等分线(即角平分线)、交于点,已知,,则__________;②如图5,、分别为、的10等分线.它们的交点从上到下依次为、、、…、.已知,,则__________;③如图6,、的角平分线、交于点D,已知,则__________;④如图7,、的角平分线、交于点D,则、、之间的数量关系为__________.18.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.19.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.20.平面内的两条直线有相交和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度建筑项目技术合作合同
- 2024年度大连国际会议中心会场租赁合同
- 吸汗内衣市场发展现状调查及供需格局分析预测报告
- 连接用电缆项目评价分析报告
- 2024年度个人信贷还款合同
- 2024年度智能制造系统集成与实施合同
- 电阻器市场需求与消费特点分析
- 2024年度大学会议与活动场地预定合同
- 2024年度商品购销合同(含售后服务协议)
- 条形音箱市场发展现状调查及供需格局分析预测报告
- 国开(吉林)2024年《兽医临床诊疗技术》形成性测试1-3终考答案
- 免疫规划接种程序
- 供应链的未来发展趋势和预测报告
- 专题05 用所给单词的正确形式填空100道
- 志愿服务课件教学课件
- 2023年四川省林业和草原局直属事业单位招聘考试真题
- 临床输血知识培训
- 生态系统的信息传递课件
- 消防宣传月全民消防生命至上消防安全教育课件
- DB11T 2103.2-2023 社会单位和重点场所消防安全管理规范 第2部分:养老机构
- 合肥市包河区2024年八年级上学期《生物》期中试题与参考答案
评论
0/150
提交评论