版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市惠安县第十六中学2025届高二上数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列中,若,则公比()A. B.C.2 D.32.已知双曲线的左、右焦点分别为,点在的左支上,过点作的一条渐近线的垂线,垂足为,则的最小值为()A. B.C. D.3.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.104.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.金刚石的成分为纯碳,是自然界中存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它外接球的体积为()A. B.C. D.6.设等差数列,前n项和分别是,若,则()A.1 B.C. D.7.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.8.已知双曲线(,)的左、右焦点分别为,,点A的坐标为,点P是双曲线在第二象限的部分上一点,且,点Q是线段的中点,且,Q关于直线PA对称,则双曲线的离心率为()A.3 B.2C. D.9.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数据,即“结绳计数”,如图,一位古人在从右到左(即从低位到高位)依次排列的红绳子上打结,满六进一,用6来记录每年进的钱数,由图可得,这位古人一年收入的钱数用十进制表示为()A.180 B.179C.178 D.17710.若数列1,a,b,c,9是等比数列,则实数b的值为()A.5 B.C.3 D.3或11.下列说法正确的有()个.①向量,,,不一定成立;②圆与圆外切③若,则数是数,的等比中项.A.1 B.2C.3 D.012.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(如图1).其中“100”的两个“0”设计为两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切(如图2).已知,则由其中一个圆心向另一个小圆引的切线长与两大圆的公共弦长之比为()A. B.3C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知、分别为双曲线的左、右焦点,为双曲线右支上一点,满足,直线与圆有公共点,则双曲线的离心率的取值范围是___________.14.焦点在轴上的双曲线的离心率为,则的值为___________.15.半径为R的圆外接于,且,若,则面积的最大值为________.16.已知双曲线左、右焦点分别为,,点P是双曲线左支上一点且,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在三棱柱中,,点在平面ABC上的射影为线段AC的中点D,侧面是边长为2的菱形(1)若△ABC是正三角形,求异面直线与BC所成角的余弦值;(2)当直线与平面所成角的正弦值为时,求线段BD的长18.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)19.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.20.(12分)已知椭圆的下焦点为、上焦点为,其离心率.过焦点且与x轴不垂直的直线l交椭圆于A、B两点(1)求实数m的值;(2)求△ABO(O为原点)面积的最大值21.(12分)(1)叙述正弦定理;(2)在△中,应用正弦定理判断“”是“”成立的什么条件,并加以证明.22.(10分)直线:和:(1)若两直线垂直,求m的值;(2)若两直线平行,求平行线间的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题得,化简即得解.【详解】因为,所以,所以,解得.故选:C2、D【解析】利用双曲线定义可得到,将的最小值变为的最小值问题,数形结合得解.【详解】由题意得,故,如图所示:到渐近线的距离,则,当且仅当,,三点共线时取等号,∴的最小值为.故选:D3、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.4、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.5、A【解析】求得外接球的半径,进而计算出外接球体积.【详解】设,正八面体的棱长为,根据正八面体的性质可知:,所以是外接球的球心,且半径,所以外接球的体积为.故选:A6、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B7、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.8、C【解析】由角平分线的性质可得,结合已知条件即可求双曲线的离心率.【详解】由题设,易知:,由知:,即,整理得:.故选:C9、D【解析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为、、,然后把它们相加即可.【详解】(个).所以古人一年收入的钱数用十进制表示为个.故选:D.10、C【解析】根据等比数列的定义,利用等比数列的通项公式求解【详解】解:设该等比数列公比为q,∵数列1,a,b,c,9是等比数列,∴,,∴,故,解得,∴故选:C11、A【解析】由向量数量积为实数,以及向量共线定理,即可判断①;求出圆心距,即可判断两圆位置关系,从而判断②;取,即可判断③【详解】对于①,与共线,与共线,故不一定成立,故①正确;对于②,圆的圆心为,半径为,圆可变形为,故其圆心为,半径为,则圆心距,由,所以两圆相交,故②错误;对于③,若,取,则数不是数的等比中项,故③错误故选:A12、C【解析】作出图形,进而根据勾股定理并结合圆与圆的位置关系即可求得答案.【详解】如示意图,由题意,,则,又,,所以,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】过点作于,过点作于,利用双曲线的定义以及勾股定理可求得,由已知可得,可得出关于、的齐次不等式,结合可求得的取值范围.【详解】过点作于,过点作于,因为,所以,又因为,所以,故,又因为,且,所以,因此,所以,又因为直线与圆有公共点,所以,故,即,则,所以,又因为双曲线的离心率,所以.故答案为:.14、【解析】将双曲线的方程化为标准式,可得出、,由此可得出关于的等式,即可解得的值.【详解】双曲线的标准方程为,由题意可得,则,,,所以,,解得.故答案为:.15、【解析】利用正弦定理将已知条件转化为边之间的关系,然后用余弦定理求得C;利用三角形面积公式,结合两角差的正弦函数公式和二倍角公式得,再利用辅助角公式得,最后利用函数的值域计算得结论.【详解】因为所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以当时,S最大,.若,则面积的最大值为.故答案为:.【点睛】本题考查了两角和与差的三角函数公式,二倍角公式及应用,正弦定理,余弦定理,三角形面积公式,函数的图象与性质,属于中档题.16、3【解析】根据双曲线方程求出,再根据双曲线的定义可知,即可得到、,再由正弦定理计算可得;【详解】解:因为双曲线为,所以、,因为点P是双曲线左支上一点且,所以,所以,,在中,由正弦定理可得,所以;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)建立空间直角坐标系,利用向量法求得直线与所成角的余弦值.(2)结合直线与平面所成的角,利用向量法列方程,化简求得的长.【小问1详解】依题意点在平面ABC上的射影为线段AC的中点D,所以平面,,由于,所以,以为空间坐标原点建立如图所示空间直角坐标系,,,当是等边三角形时,,.设直线与所成角为,则.【小问2详解】设,则,,设平面的法向量为,则,故可设,设直线与平面所成角为,则,化简的,解得或,也即或.18、答案见解析【解析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.19、(1)证明见解析;(2)证明见解析.【解析】(1)应用的关系,结合构造法可得,根据已知条件及等比数列的定义即可证结论.(2)由(1)得,再应用错位相减法求,即可证结论.【小问1详解】证明:对任意的,,,时,,解得,时,因为,,两式相减可得:,即有,∴,又,则,因为,,所以,对任意的,,所以,因此,是首项和公比均为3的等比数列【小问2详解】由(1)得:,则,,,两式相减得:,化简可得:,又,∴.20、(1)2;(2)﹒【解析】(1)根据已知条件得,,结合离心率,即可解得答案(2)设直线的方程,与椭圆方程联立,利用弦长公式以及三角形的面积公式,基本不等式即可得出答案【小问1详解】由题意可得,,,∵离心率,∴,∵,∴,解得【小问2详解】由(1)知,椭圆,上焦点,设,,,,直线的方程为:,联立,得,∴,,∴,∴,∴,当且仅当,即时等号成立,∴为原点)面积的最大值为21、(1)正弦定理见解析;(2)充要条件,证明见解析【解析】(1)用语言描述正弦定理,并用公式表达正弦定理(2)利用“大角对大边”的性质,并根据正弦定理进行边角互化即可【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务分包合同
- 第二章 集中趋势的统计描述 课件
- 县食品安全快速检测工作实施方案
- 施工技术服务合同协议书
- Metobromuron-Standard-生命科学试剂-MCE
- 物资采购及验收管理制度
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (728)【含简略答案】
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (696)【含简略答案】
- 教师招考课程设计
- 路基支挡工程课程设计
- 2024年消防知识竞赛考试题库500题(含答案)
- 北师大版八年级上册数学期中考试试卷带答案
- 基本初等函数的导数 说课课件-2023-2024学年高二下学期数学人教A版(2019)选择性必修第二册
- 2024-2025学年部编版语文八年级上册 期中综合测试卷(四)
- (新版)云南水利安全员(B证)考试题库-上(单选题)
- 2024版小学语文新课程标准
- 2024年公考时事政治知识点
- 2022版义务教育(历史)课程标准(附课标解读)
- 业主授权租户安装充电桩委托书
- 三年级上海市沪版英语第一学期上学期期中考试试卷
- 大学军事理论课教程第三章军事思想第一节军事思想概述
评论
0/150
提交评论