2025届湖南省长沙市一中数学高三第一学期期末质量检测模拟试题含解析_第1页
2025届湖南省长沙市一中数学高三第一学期期末质量检测模拟试题含解析_第2页
2025届湖南省长沙市一中数学高三第一学期期末质量检测模拟试题含解析_第3页
2025届湖南省长沙市一中数学高三第一学期期末质量检测模拟试题含解析_第4页
2025届湖南省长沙市一中数学高三第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省长沙市一中数学高三第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,当时,不等式恒成立,则实数a的取值范围为()A. B. C. D.2.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B. C. D.3.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.4.函数的最大值为,最小正周期为,则有序数对为()A. B. C. D.5.已知函数,若函数有三个零点,则实数的取值范围是()A. B. C. D.6.已知复数满足:(为虚数单位),则()A. B. C. D.7.已知向量,,则与的夹角为()A. B. C. D.8.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月9.双曲线的一条渐近线方程为,那么它的离心率为()A. B. C. D.10.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B11.已知,,则等于().A. B. C. D.12.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量服从正态分布,,则__________.14.从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____________.15.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为______________.(用数字作答)16.已知实数,满足约束条件则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.18.(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.19.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.20.(12分)已知数列,其前项和为,若对于任意,,且,都有.(1)求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.21.(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.22.(10分)如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.(1)求证:平面.(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由变形可得,可知函数在为增函数,由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立..令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.2、B【解析】

利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,,所以,所以的值域为.故选:B【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.3、A【解析】

本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.4、B【解析】函数(为辅助角)∴函数的最大值为,最小正周期为故选B5、B【解析】

根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,,所以是的一个零点,当时,,若,则,即,所以,解得;当时,,则,且若在时有一个零点,则,综上可得,故选:B.【点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.6、A【解析】

利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.7、B【解析】

由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.8、C【解析】

根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.9、D【解析】

根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】∵双曲线的一条渐近线方程为,可得,∴,∴双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.10、C【解析】试题分析:集合考点:集合间的关系11、B【解析】

由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.【详解】由题意得,又,所以,结合解得,所以,故选B.【点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.12、A【解析】

根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,,,,,若函数图象的纵坐标不变,横坐标变为原来的倍,则,所以当时,,在有且仅有5个零点,,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、0.22.【解析】

正态曲线关于x=μ对称,根据对称性以及概率和为1求解即可。【详解】【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题.14、【解析】

基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,由此能求出概率.【详解】解:从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,分别为:,,,,,,,.所以第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为.故答案为.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,属于基础题.15、5040.【解析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。16、1【解析】

作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.【详解】作出约束条件表示的可行域是以为顶点的三角形及其内部,转化目标函数为当目标函数经过点时,直线的截距最大此时取得最大值1.故答案为:1【点睛】本题考查了线性规划问题,考查了学生转化划归,数形结合,数学运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)9060元【解析】

(1)根据古典概型概率公式和组合数的计算可得所求概率;(2)任选一天,设该天的经济损失为元,分别求出,,,进而求得数学期望,据此得出该企业一个月经济损失的数学期望.【详解】解:(1)设为选取的3天中空气质量为优的天数,则.(2)任选一天,设该天的经济损失为元,则的可能取值为0,220,1480,,,,所以(元),故该企业一个月的经济损失的数学期望为(元).【点睛】本题考查古典概型概率公式和组合数的计算及数学期望,属于基础题.18、(1)(2)【解析】

(1)把代入,利用零点分段讨论法求解;(2)对任意成立转化为求的最小值可得.【详解】解:(1)当时,不等式可化为.讨论:①当时,,所以,所以;②当时,,所以,所以;③当时,,所以,所以.综上,当时,不等式的解集为.(2)因为,所以.又因为,对任意成立,所以,所以或.故实数的取值范围为.【点睛】本题主要考查含有绝对值不等式的解法及恒成立问题,恒成立问题一般是转化为最值问题求解,侧重考查数学建模和数学运算的核心素养.19、(1)见解析(2)【解析】

(1)由余弦定理及已知等式得出关系,再由正弦定理可得结论;(2)由余弦定理和已知条件解得,然后由面积公式计算.【详解】解:(1)由余弦定理得,由得到,由正弦定理得.因为,,所以.(2)由题意及余弦定理可知,①由得,即,②联立①②解得,.所以.【点睛】本题考查利用正余弦定理解三角形.考查三角形面积公式,由已知条件本题主要是应用余弦定理求出边.解题时要注意对条件的分析,确定选用的公式.20、(1)证明见解析;(2).【解析】

(1)用数学归纳法证明即可;(2)根据条件可得,然后将用,,表示出来,根据是一个整数,可得结果.【详解】解:(1)令,,则即∴,∴成等差数列,下面用数学归纳法证明数列是等差数列,假设成等差数列,其中,公差为,令,,∴,∴,即,∴成等差数列,∴数列是等差数列;(2),,若存在正整数,使得是整数,则,设,,∴是一个整数,∴,从而又当时,有,综上,的最小值为.【点睛】本题主要考查由递推关系得通项公式和等差数列的性质,关键是利用数学归纳法证明数列是等差数列,属于难题.21、(1);(2).【解析】

(1)利用定义法求出函数在上单调递增,由和,求出,求出,运用单调性求出不等式的解集;(2)由于恒成立,由(1)得出在上单调递增,恒成立,设,利用三角恒等变换化简,结合恒成立的条件,构造新函数,利用单调性和最值,求出实数的取值范围.【详解】(1)设,,所以函数在上单调递增,又因为和,则,所以得解得,即,故的取值范围为;(2)由于恒成立,恒成立,设,则,令,则,所以在区间上单调递增,所以,根据条件,只要,所以.【点睛】本题考查利用定义法求函数的单调性和利用单调性求不等式的解集,考查不等式恒成立问题,还运用降幂公式、两角和与差的余弦公式、辅助角公式,考查转化思想和解题能力.22、(1)证明见解析(2)【解析】

(1)由等腰梯形的性质可证得,由射影可得平面,进而求证;(2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论