




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省常德市石门一中高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2C.3 D.42.现在人们的环保意识越来越强,对绿色建筑材料的需求也越来越高.某甲醛检测机构对某种绿色建筑材料进行检测,一定量的该种材料在密闭的检测房间内释放的甲醛浓度(单位:)随室温(单位:℃)变化的函数关系式为(为常数).若室温为20℃时该房间的甲醛浓度为,则室温为30℃时该房间的甲醛浓度约为(取)()A. B.C. D.3.已知函数,记集合,,若,则的取值范围是()A.[0,4] B.(0,4)C.[0,4) D.(0,4]4.已知函数,则()A.5 B.2C.0 D.15.在平行四边形中,与相交于点,是线段中点,的延长线交于点,若,则等于()A. B.C. D.6.函数的单调递减区间为A. B.C. D.7.已知函数的值域为R,则a的取值范围是()A. B.C. D.8.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是A.400 B.40C.4 D.6009.设函数的最小值为-1,则实数的取值范围是A. B.C. D.10.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于__________12.已知的定义域为,那么a的取值范围为_________13.若,则____14.已知函数定义域为,若满足①在内是单调函数;存在使在上的值域为,那么就称为“半保值函数”,若函数且是“半保值函数”,则的取值范围为________15.已知平面向量,的夹角为,,则=______16.已知函数的两个零点分别为,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围18.已知全集,集合,.(1)若,求;(2)若,求实数的取值范围.19.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.20.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:(1)AD边所在直线的方程;(2)DC边所在直线的方程21.已知向量,,.(Ⅰ)若关于的方程有解,求实数的取值范围;(Ⅱ)若且,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】画图可知四个零点分别为-1和3,和e,但注意到f(x)的定义域为x>0,故选C.2、D【解析】由题可知,,求出,在由题中的函数关系式即可求解.【详解】由题意可知,,解得,所以函数的解析式为,所以室温为30℃时该房间的甲醛浓度约为.故选:D.3、C【解析】对分成和两种情况进行分类讨论,结合求得的取值范围.【详解】当时,,此时,符合题意.当时,,由解得或,由得或,其中,,和都不是这个方程的根,要使,则需.综上所述,的取值范围是.故选:C4、C【解析】由分段函数,选择计算【详解】由题意可得.故选:C.【点睛】本题考查分段函数的求值,属于简单题5、A【解析】化简可得,再由及选项可得答案【详解】解:由题意得,,;、、三点共线,,结合选项可知,;故选:6、C【解析】由幂函数的性质知,函数的图像以原点为对称中心,在均是减函数故答案为C7、D【解析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D8、A【解析】频数为考点:频率频数的关系9、C【解析】当时,为增函数,最小值为,故当时,,分离参数得,函数开口向下,且对称轴为,故在递增,,即.考点:分段函数的最值.【思路点晴】本题主要考查分段函数值域问题,由于函数的最小值为,所以要在两段函数图象都要讨论最小值.首先考虑没有参数的一段,当时,为增函数,最小值为.由于这一段函数值域已经包括了最小值,故当时,值域应该不小于,分离常数后利用二次函数图象与性质可求得参数的取值范围.10、C【解析】结合特殊值、差比较法确定正确选项.【详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、4π【解析】设点的坐标为(则,即(以点的轨迹是以为圆心,2为半径的圆,所以点的轨迹所包围的图形的面积等于4π.即答案为4π12、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:13、##0.25【解析】运用同角三角函数商数关系式,把弦化切代入即可求解.【详解】,故答案为:.14、【解析】根据半保值函数的定义,将问题转化为与的图象有两个不同的交点,即有两个不同的根,换元后转化为二次方程的实根的分布可解得.【详解】因为函数且是“半保值函数”,且定义域为,由时,在上单调递增,在单调递增,可得为上的增函数;同样当时,仍为上的增函数,在其定义域内为增函数,因为函数且是“半保值函数”,所以与的图象有两个不同的交点,所以有两个不同的根,即有两个不同的根,即有两个不同的根,可令,,即有有两个不同正数根,可得,且,解得.【点睛】本题考查函数的值域的求法,解题的关键是正确理解“半保值函数”,解题时要认真审题,仔细解答,注意合理地进行等价转化15、【解析】=代入各量进行求解即可.【详解】=,故答案.【点睛】本题考查了向量模的求解,可以通过先平方再开方即可,属于基础题.16、【解析】依题意方程有两个不相等实数根、,利用韦达定理计算可得;【详解】解:依题意令,即,所以方程有两个不相等实数根、,所以,,所以;故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是18、(1);(2)或.【解析】(1)先求得集合A,当时,求得集合B,根据交集、补集运算的概念,即可得答案.(2)根据题意,可得,根据,可得或,即可得答案【详解】(1),当时,所以;(2)因为,所以,又因为,所以或,解得或.19、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.20、(1);(2)【解析】分析:(1)先由AD与AB垂直,求得AD的斜率,再由点斜式求得其直线方程;(2)根据矩形特点可以设DC的直线方程为,然后由点到直线的距离得出,就可以求出m的值,即可求出结果.详解:(1)由题意:ABCD为矩形,则AB⊥AD,又AB边所在的直线方程为:x-3y-6=0,所以AD所在直线的斜率kAD=-3,而点T(-1,1)在直线AD上所以AD边所在直线的方程为:3x+y+2=0.(2)方法一:由ABCD为矩形可得,AB∥DC,所以设直线CD的方程为x-3y+m=0.由矩形性质可知点M到AB、CD的距离相等所以=,解得m=2或m=-6(舍)所以DC边所在的直线方程为x-3y+2=0.方法二:方程x-3y-6=0与方程3x+y+2=0联立得A(0,-2),关于M的对称点C(4,2)因AB∥DC,所以DC边所在的直线方程为x-3y+2=0.点睛:本题主要考查直线方程的求法,在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 篮球课程思政教学设计
- (盛高培训之四)薪酬体系设计技术(资料1)
- 上海思博职业技术学院《体育与健康-健美操》2023-2024学年第一学期期末试卷
- 广西理工职业技术学院《计算机辅助设计》2023-2024学年第二学期期末试卷
- 巴中职业技术学院《综合商务英语III》2023-2024学年第一学期期末试卷
- 护理一病一品
- 定西职业技术学院《内科学F》2023-2024学年第一学期期末试卷
- 兰州航空职业技术学院《Python编程》2023-2024学年第二学期期末试卷
- 湖北警官学院《工程力学C》2023-2024学年第二学期期末试卷
- 浙江经贸职业技术学院《免疫病理学》2023-2024学年第一学期期末试卷
- 进料加工业务操作流程
- 商业广场步行街改造合同
- 手术室巡回护士的工作
- 心力衰竭的饮食护理
- 冷库及制冷设备采购项目方案投标文件(技术方案)
- 2024-2030年中国分布式光伏电站行业发展规模及项目投资可行性分析报告
- 2024年高考真题-地理(河北卷) 含答案
- 公司人员优化整合实施方案
- 2024年湖北省高考数学第二次联考试卷附答案解析
- 2024年二级建造师市政-学霸笔记
- 四川省凉山州安宁河联盟2023-2024学年高一下学期期中联考生物试题2
评论
0/150
提交评论