版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成都市双流区2025届高一数学第一学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1002.已知函数的图像是连续的,根据如下对应值表:x1234567239-711-5-12-26函数在区间上的零点至少有()A.5个 B.4个C.3个 D.2个3.下列函数图象中,不能用二分法求零点的是()A. B.C. D.4.下列命题中正确的是A. B.C. D.5.命题“,”的否定为()A., B.,C, D.,6.已知函数的零点在区间上,则()A. B.C. D.7.命题“”为真命题的一个充分不必要条件是()A. B.C. D.8.已知命题:角为第二或第三象限角,命题:,命题是命题的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件9.设向量,,,则A. B.C. D.10.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(﹣2)=()A.﹣3 B.﹣1C.1 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.12.已知函数(且)过定点P,且P点在幂函数的图象上,则的值为_________13.已知,,则的最小值是___________.14.若“”是“”的充要条件,则实数m的取值是_________15.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______16.集合,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合.(1)求集合;(2)求18.已知长方体AC1中,棱AB=BC=3,棱BB1=4,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F.(1)求证A1C⊥平面EBD;(2)求二面角B1—BE—A1的正切值.19.已知全集,,.(1)求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.20.已知函数,函数的最小正周期为,是函数的一条对称轴.(1)求函数的对称中心和单调区间;(2)若,求函数在的最大值和最小值,并写出对应的的值21.已知函数,且求函数的定义域;求满足的实数x的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.2、C【解析】利用零点存在性定理即可求解.【详解】函数的图像是连续的,;;,所以在、,之间一定有零点,即函数在区间上的零点至少有3个.故选:C3、B【解析】利用二分法求函数零点所满足条件可得出合适的选项.【详解】观察图象与轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B不能用二分法求零点故选:B.4、D【解析】本题考查向量基本运算对于A,,故A不正确;对于B,由于向量的加减运算的结果仍为向量,所以,故B错误;由于向量的数量积结果是一个实数,故C错误,C的结果应等于0;D正确5、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.6、C【解析】根据解析式,判断的单调性,结合零点存在定理,即可求得零点所在区间,结合题意,即可求得.【详解】函数的定义域为,且在上单调递增,故其至多一个零点;又,,故的零点在区间,故.故选:7、D【解析】先确定“”为真命题时的范围,进而找到对应选项.【详解】“”为真命题,可得,因为,故选:D.8、D【解析】利用切化弦判断充分性,根据第四象限的角判断必要性.【详解】当角为第二象限角时,,所以,当角为第三象限角时,,所以,所以命题是命题的不充分条件.当时,显然,当角可以为第四象限角,命题是命题的不必要条件.所以命题是命题的既不充分也不必要条件.故选:D9、A【解析】,由此可推出【详解】解:∵,,,∴,,,,故选:A【点睛】本题主要考查平面向量垂直的坐标表示,考查平面向量的模,属于基础题10、B【解析】因为函数f(x)为奇函数,所以.选B二、填空题:本大题共6小题,每小题5分,共30分。11、(1),定义域为或;(2).【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.12、9【解析】由指数函数的性质易得函数过定点,再由幂函数过该定点求解析式,进而可求.【详解】由知:函数过定点,若,则,即,∴,故.故答案为:9.13、【解析】化简函数,由,得到,结合三角函数的性质,即可求解.【详解】由题意,函数,因为,可得,当时,即时,函数取得最小值.故答案为:.14、0【解析】根据充要条件的定义即可求解.【详解】,则{x|}={x|},即.故答案为:0.15、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角16、【解析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【详解】因为,,所以.故答案为:【点睛】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】⑴解不等式求得集合⑵根据已知的集合,集合,运用交集的运算即可求得解析:(1)由已知得.(2).18、(1)证明见解析(2)【解析】(1)先证明平面,则,再证明平面,则,从而即可证明A1C⊥平面EBD;(2)由平面,又,则,进而可得是二面角平面角,在中,求出,即可在中求出,从而即可得答案.【小问1详解】证明:平面,,又,,平面,,又平面,,且,,平面,,又,A1C⊥平面EBD;【小问2详解】解:平面,又,是二面角的平面角,在中,,在中,,.19、(1);(2);(3).【解析】(1)因为全集,,所以(2)因为,且.所以实数的取值范围是(3)因为,且,所以,所以可得20、(1)对称中心是,单调递增区间是,单调递减区间是(2)当时,,当时,【解析】(1)由函数的最小正周期,求得,再根据当时,函数取到最值求得,根据函数的性质求对称中心和单调区间;(2)写出的解析式,根据定义域,求最值【详解】(1),,,所以,,对称中心是,单调递增区间是,单调递减区间是(2),,当时,,当时,【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度金融合同审查主要措施及操作规范3篇
- 二零二五年购房中介合同:房地产投资风险预警协议3篇
- 2025防撞墙模板加工合同
- 2025无锡市公有住房承租权转让的合同范本
- 二零二五年度智能车库车位租赁与增值服务合同3篇
- 高铁站附近药店租赁合同
- 电力公司工程师劳动合同概览
- 生态农业基地建设合同样本
- 专利工程师合同参考
- 2025年度高端商场收银员聘用合同模板6篇
- 大型寺院建设规划方案
- 茉莉花-附指法钢琴谱五线谱
- 人教版九年级英语全册用英语讲好中国故事
- 2024年人工智能(AI)训练师职业技能鉴定考试题库(浓缩500题)
- 2024版中国台球行业市场规模及投资策略研究报告(智研咨询)
- 2024年国家公安部直属事业单位招录人民警察及工作人员696人笔试(高频重点复习提升训练)共500题附带答案详解
- 初中必背古诗文138首
- 上海生活垃圾分类现状调查报告
- 小升初中简历模板
- 【深信服】PT1-AF认证考试复习题库(含答案)
- GB/T 43824-2024村镇供水工程技术规范
评论
0/150
提交评论