2025届东莞东华高级中学高二数学第一学期期末达标检测模拟试题含解析_第1页
2025届东莞东华高级中学高二数学第一学期期末达标检测模拟试题含解析_第2页
2025届东莞东华高级中学高二数学第一学期期末达标检测模拟试题含解析_第3页
2025届东莞东华高级中学高二数学第一学期期末达标检测模拟试题含解析_第4页
2025届东莞东华高级中学高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届东莞东华高级中学高二数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,点在抛物线上,过点的直线与直线垂直相交于点,,则的值为()A. B.C. D.2.设满足则的最大值为A. B.2C.4 D.163.若,则n的值为()A.7 B.8C.9 D.104.已知双曲线左右焦点为,,过的直线与双曲线的右支交于P,Q两点,且,若为以Q为顶角的等腰三角形,则双曲线的离心率为()A. B.C. D.5.已知圆,圆相交于P,Q两点,其中,分别为圆和圆的圆心.则四边形的面积为()A.3 B.4C.6 D.6.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含7.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.8.在平面区域内随机投入一点P,则点P的坐标满足不等式的概率是()A. B.C. D.9.在等比数列中,若是函数的极值点,则的值是()A. B.C. D.10.已知,则点到平面的距离为()A. B.C. D.11.在三棱锥中,,,,若,,则()A. B.C. D.12.执行如图所示的程序框图,若输出的,则输人的()A. B.或C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,且,则实数________________14.设数列满足且,则________.数列的通项=________.15.已知抛物线的焦点为,准线为,过点的直线与抛物线交于A,B两点(点B在第一象限),与准线交于点P.若,,则____________.16.已知函数,,若,,使得,则实数a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,,.(1)求点B到平面PCD的距离;(2)求二面角的平面角的余弦值.18.(12分)已知函数.(1)若,求函数的单调区间;(2)设存在两个极值点,且,若,求证:.19.(12分)已知抛物线C:焦点F的横坐标等于椭圆的离心率.(1)求抛物线C的方程;(2)过(1,0)作直线l交抛物线C于A,B两点,判断原点与以线段AB为直径的圆的位置关系,并说明理由.20.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)试讨论函数的单调性.21.(12分)如图1,已知矩形中,,E为上一点且.现将沿着折起,使点D到达点P的位置,且,得到的图形如图2.(1)证明为直角三角形;(2)设动点M在线段上,判断直线与平面位置关系,并说明理由.22.(10分)某企业为响应“安全生产”号召,将全部生产设备按设备安全系数分为A,两个等级,其中等设备安全系数低于A等设备.企业定时对生产设备进行检修,并将部分等设备更新成A等设备.据统计,2020年底该企业A等设备量已占全体设备总量的30%.从2021年开始,企业决定加大更新力度,预计今后每年将16%的等设备更新成A等设备,与此同时,4%的A等设备由于设备老化将降级成等设备.(1)在这种更新制度下,在将来的某一年该企业的A等设备占全体设备的比例能否超过80%?请说明理由;(2)至少在哪一年底,该企业的A等设备占全体设备的比例超过60%.(参考数据:,,)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题,由于过抛物线上一点的直线与直线垂直相交于点,可得,又,故,所以的坐标为,由余弦定理可得.故选:D.考点:抛物线的定义、余弦定理【点睛】本题主要考查抛物线的定义与性质,考查学生的计算能力,属于中档题2、C【解析】可行域如图,则直线过点A(0,1)取最大值2,则的最大值为4,选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.3、D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D4、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意,又,所以,从而,,,中,,中.,所以,,所以,故选:C5、A【解析】求得,由此求得四边形的面积.【详解】圆的圆心为,半径;圆的圆心为,所以,由、两式相减并化简得,即直线的方程为,到直线的距离为,所以,所以四边形的面积为.故选:A6、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.7、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D8、A【解析】根据题意作出图形,进而根据几何概型求概率的方法求得答案.【详解】根据题意作出示意图,如图所示:于,所求概率.故选:A.9、B【解析】根据导数的性质求出函数的极值点,再根据等比数列的性质进行求解即可.【详解】,当时,单调递增,当时,单调递减,当时,单调递增,所以是函数的极值点,因为,且所以,故选:B10、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A11、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B12、A【解析】根据题意可知该程序框图显示的算法函数为,分和两种情况讨论即可得解.【详解】解:该程序框图显示得算法函数为,由,当时,,方程无解;当时,,解得,综上,若输出的,则输入的.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,利用向量的数量积的坐标运算即可.【详解】,则,解得故答案为:14、①.5②.【解析】设,根据题意得到数列是等差数列,求得,得到,利用,结合“累加法”,即可求得.【详解】解:由题意,数列满足,所以当时,,,解得,设,则,且,所以数列是等差数列,公差为,首项为,所以,即,所以,当时,可得,其中也满足,所以数列的通项公式为.故答案为:;.15、【解析】过点作,垂足为,过点作,垂足为,然后根据抛物线的定义和三角形相似的关系可求得结果【详解】过点作,垂足为,过点作,垂足为,由抛物线的定义可知,,不妨设,因为,所以,因为∽,所以,即,所以,所以,因为与反向,所以.故答案为:16、【解析】先求出两函数在上的值域,再由已知条件可得,且,列不等式组可求得结果【详解】由,得,当时,,所以在上单调递减,所以,即,由,得,当时,,所以在上单调递增,所以,即,因为,,使得,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)建立空间直角坐标系,用点到面的距离公式即可算出答案;(2)先求出两个面的法向量,然后用二面角公式即可.【小问1详解】∵平面平面∴PB⊥AB,PB⊥BC,又两两互相垂直,所以,以点为坐标原点,分别为轴,轴,轴建立如图所示的空间直角坐标系,D(3,6,0),A(0,6,0)设平面的一个法向量所以n⋅PD令,可得记点到平面的距离为,则d=【小问2详解】由(1)可知平面的一个法向量为平面的一个法向量为设二面角的平面角为由图可知,18、(1)在和上单调递增,在上单调递减;(2)证明见解析【解析】(1)首先求出函数的导函数,再令、,分别求出函数的单调区间;(2)先求出,构造函数,求出函数的导数,得到函数的单调区间,求出函数的最小值,从而证明结论【小问1详解】解:当时,,所以,令,解得或,令,解得,所以函数在和上单调递增,在上单调递减;【小问2详解】解:,,,因为存在两个极值点,,所以存在两个互异的正实数根,,所以,,则,所以,所以,令,则,,,在上单调递减,,而,即,19、(1);(2)原点在以线段AB为直径的圆上,详见解析.【解析】(1)利用椭圆方程可得其离心率,进而可求抛物线的焦点,即求;(2)设直线l的方程为,联立抛物线方程,利用韦达定理法可得,即得.【小问1详解】由椭圆,可得,故,∴抛物线C的方程为.【小问2详解】由题可设直线l的方程为,由,得,设,则,又,故,∴,∴,即,故原点在以线段AB为直径的圆上.20、(1)(2)详见解析.【解析】(1)由,求导,得到,写出切线方程;(2)求导,再分,,讨论求解.【小问1详解】解:因为,所以,则,所以,所以曲线在点处的切线方程是,即;【小问2详解】因为,所以,当时,成立,则在上递减;当时,令,得,当时,,当时,,所以在上递减,在上递增;综上:当时,在上递减;当时,在上递减,在上递增;21、(1)证明见解析(2)答案不唯一,见解析【解析】(1)利用折叠前后的线段长度及勾股定理求证即可;(2)动点M满足时和,但时两种情况,利用线线平行或相交得到结论.【小问1详解】在折叠前的图中,如图:,E为上一点且,则,折叠后,所以,又,所以,所以为直角三角形.小问2详解】当动点M在线段上,满足,同样在线段上取,使得,则,当时,则,又且所以,且,所以四边形为平行四边形,所以,又平面,所以此时平面;当时,此时,但,所以四边形为梯形,所以与必然相交,所以与平面必然相交.综上,当动点M满足时,平面;当动点M满足,但时,与平面相交.22、(1)A等设备量不可能超过生产设备总量的80%,理由见解析;(2)在2025年底实现A等设备量超过生产设备总量的60%.【解析】(1)根据题意表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论