河南省罗山高中老校区2025届数学高二上期末考试模拟试题含解析_第1页
河南省罗山高中老校区2025届数学高二上期末考试模拟试题含解析_第2页
河南省罗山高中老校区2025届数学高二上期末考试模拟试题含解析_第3页
河南省罗山高中老校区2025届数学高二上期末考试模拟试题含解析_第4页
河南省罗山高中老校区2025届数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省罗山高中老校区2025届数学高二上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知分别是双曲线的左、右焦点,动点P在双曲线的左支上,点Q为圆上一动点,则的最小值为()A.6 B.7C. D.52.点F是抛物线的焦点,点,P为抛物线上一点,P不在直线AF上,则△PAF的周长的最小值是()A.4 B.6C. D.3.抛物线的准线方程为,则实数的值为()A. B.C. D.4.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.5.阅读程序框图,该算法的功能是输出A.数列的第4项 B.数列的第5项C.数列的前4项的和 D.数列的前5项的和6.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.147.已知直线,若直线与垂直,则的倾斜角为()A. B.C. D.8.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.命题“若,则”的否命题为“若,则”C.若命题p:或;命题q:或,则是的必要不充分条件D.“”是“”的充分不必要条件9.已知在四棱锥中,平面,底面是边长为4的正方形,,E为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.10.已知曲线,则曲线W上的点到原点距离的最小值是()A. B.C. D.11.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种12.中心在原点的双曲线C的右焦点为,实轴长为2,则双曲线C的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在区间上随机取1个数,则取到的数小于2的概率为___________.14.若直线与直线互相垂直,则___________.15.直线与圆相交于A,B两点,则的最小值为__________.16.已知点是椭圆上任意一点,则点到直线距离的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,,.(1)求的通项公式;(2)求的前项和的最大值.18.(12分)在棱长为的正方体中,、分别为线段、的中点.(1)求平面与平面所成锐二面角的余弦值;(2)求直线到平面的距离.19.(12分)已知椭圆的长轴长是,以其短轴为直径的圆过椭圆的左右焦点,.(1)求椭圆E的方程;(2)过椭圆E左焦点作不与坐标轴垂直的直线,交椭圆于M,N两点,线段MN的垂直平分线与y轴负半轴交于点Q,若点Q的纵坐标的最大值是,求面积的取值范围.20.(12分)已知抛物线C:y2=2px(p>0)的焦点与椭圆M:=1的右焦点重合.(1)求抛物线C的方程;(2)直线y=x+m与抛物线C交于A,B两点,O为坐标原点,当m为何值时,=0.21.(12分)已知椭圆:,的左右焦点,是双曲线的左右顶点,的离心率为,的离心率为,点在上,过点E和,分别作直线交椭圆于,和,点,如图.(1)求,的方程;(2)求证:直线和的斜率之积为定值;(3)求证:为定值.22.(10分)如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,(1)求证:平面;(2)求二面角的正弦值;(3)已知点在棱上,且直线与直线所成角的余弦值为,求线段的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由双曲线的定义及三角形的几何性质可求解.【详解】如图,圆的圆心为,半径为1,,,当,,三点共线时,最小,最小值为,而,所以故选:A2、C【解析】由抛物线的定义转化后求距离最值【详解】抛物线的焦点,准线为过点作准线于点,故△PAF的周长为,,可知当三点共线时周长最小,为故选:C3、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B4、D【解析】代入计算即可.【详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D5、B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可详解:模拟程序的运行,可得:

A=0,i=1执行循环体,,

不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.6、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.7、D【解析】由直线与垂直得到的斜率,再利用斜率与倾斜角的关系即可得到答案.【详解】因为直线与垂直,且,所以,解得,设的倾斜角为,,所以.故选:D8、C【解析】根据逆否命题的定义可判断A;根据否命题的定义可判断B;求出、,根据充分条件和必要条件的概念可以判断C;解出不等式,根据充分条件和必要条件的概念可判断D.【详解】命题“若,则”的逆否命题为“若,则”,故A正确;命题“若,则”的否命题为“若,则”,故B正确;若命题p:或;命题q:或,则:-1≤x≤1是:-2≤x≤1的充分不必要条件,故C错误;或x<1,故“”是“”的充分不必要条件,故D正确.故选:C.9、B【解析】建立空间直角坐标系,以向量法去求直线与平面所成角的正弦值即可.【详解】平面,底面是边长为4的正方形,则有,而,故平面,以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系如图:则,,,设直线与平面所成角为,又由题可知为平面的一个法向量,则故选:B10、A【解析】化简方程,得到,求出的范围,作出曲线的图形,通过图象观察,即可得到原点距离的最小值详解】解:即为,两边平方,可得,即有,则作出曲线的图形,如下:则点与点或的距离最小,且为故选:A11、C【解析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.12、D【解析】根据条件,求出,的值,结合双曲线的方程进行求解即可【详解】解:设双曲线的方程为由已知得:,,再由,,双曲线的方程为:故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据几何概型计算公式进行求解即可.【详解】设“区间上随机取1个数”,对应集合为,区间长度为3,“取到的数小于2”,对应集合为,区间长度为1,所以.故答案为:14、4【解析】由直线垂直的性质求解即可.【详解】由题意得,解得.故答案为:15、【解析】直线过定点,圆心,当时,取得最小值,再由勾股定理即可求解.【详解】由,得,由,得直线过定点,且在圆的内部,由圆可得圆心,半径,当时,取得最小值,圆心与定点的距离为,则的最小值为.故答案为:.16、【解析】求椭圆上平行于的直线方程,利用平行线的距离公式求椭圆上点到直线的最小值.【详解】设与椭圆相切,且平行于的直线为,联立椭圆整理可得:,则,∴,又两平行线的距离,∴到直线距离的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)30.【解析】(1)设出等差数列的公差,由已知列式求得公差,进一步求出首项,代入等差数列的通项公式求数列的通项公式;(2)利用等差数列求和公式求和,再利用二次函数求得最值即可.【详解】解:(1)由题意得,数列公差为,则解得:,∴(2)由(1)可得,∴∵,∴当或时,取得最大值【点睛】本题考查利用基本量求解等差数列的通项公式,以及前n项和及最值,属基础题18、(1);(2).【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值;(2)证明出平面,利用空间向量法可求得直线到平面的距离.【小问1详解】解:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、、,设平面的法向量为,,,由,取,可得,易知平面的一个法向量为,,因此,平面与平面所成锐二面角的余弦值为.【小问2详解】解:,则,所以,,因为平面,所以,平面,,所以,直线到平面的距离为.19、(1);(2).【解析】(1)根据给定条件结合列式计算即可作答.(2)设出直线MN的方程,与椭圆方程联立并结合已知求出m的范围,再借助韦达定理求出面积函数,利用函数单调性计算作答.【小问1详解】令椭圆半焦距为c,依题意,,解得,所以椭圆E的方程为.【小问2详解】由(1)知,椭圆E左焦点为,设过椭圆E左焦点的直线为(存在且不为0),由消去x得,,设,则,线段的中点为,因此线段的垂直平分线为,由得的纵坐标为,依题意,且,解得,由(1)知,,,令,在上单调递减,当,即时,,当,即时,,所以面积的取值范围.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积20、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由椭圆的右焦点得出的值,进而得出抛物线C的方程;(2)联立直线和抛物线方程,利用韦达定理结合数量积公式证明即可【小问1详解】由题意,椭圆=1的右焦点为(1,0),抛物线y2=2px的焦点为(,0),所以,解得p=2,所以抛物线的方程为y2=4x;【小问2详解】因为直线y=x+m与抛物线C交于A,B两点,设A(x1,y1),B(x2,y2),联立方程组,可得x2+2(m﹣2)x+m2=0,由Δ=4(m﹣2)2﹣4m2>0,解得m<1,所以x1+x2=﹣2m+4,x1x2=m2,又因为,又=(x1,y1),=(x2,y2),可得x1x2+y1y2=x1x2+(x1+m)(x2+m)=2x1x2+m(x1+x2)+m2=m2+4m=0,解得m=﹣4<1或m=0<1,故m=﹣4或m=0.21、(1):;:(2)证明见解析(3)证明见解析【解析】(1)利用待定系数法,根据条件先求曲线的方程,再求曲线的方程;(2)首先设,表示直线和的斜率之积,即可求解定值;(3)首先表示直线与方程联立消,利用韦达定理表示弦长,以及利用直线和的斜率关系,表示弦长,并证明为定值.【小问1详解】由题设知,椭圆离心率为解得∴,∵椭圆的左右焦点,是双曲线的左右顶点,∴设双曲线:∴的离心率为解得.∴::;【小问2详解】证明:∵点在上∴设则,∴.∴直线和的斜率之积为定值1;【小问3详解】证明:设直线和的斜率分别为,,则设,:与方程联立消得“*”则,是“*”的二根则则同理∴.22、(1)证明见解析;(2);(3)或【解析】本小题主要考查直线与平面平行、二面角、异面直线所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.首先要建立空间直角坐标系,写出相关点的坐标,证明线面平行只需求出平面的法向量,计算直线对应的向量与法向量的数量积为0,求二面角只需求出两个半平面对应的法向量,借助法向量的夹角求二面角,利用向量的夹角公式,求出异面直线所成角的余弦值,利用已知条件,求出的值.试题解析:如图,以A为原点,分别以,,方向为x轴、y轴、z轴正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:=(0,2,0),=(2,0,).设,为平面BDE的法向量,则,即.不妨设,可得.又=(1,2,),可得.因为平面B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论