查补培优冲刺02 几何最值类综合压轴(原卷版)_第1页
查补培优冲刺02 几何最值类综合压轴(原卷版)_第2页
查补培优冲刺02 几何最值类综合压轴(原卷版)_第3页
查补培优冲刺02 几何最值类综合压轴(原卷版)_第4页
查补培优冲刺02 几何最值类综合压轴(原卷版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

查补培优冲刺02几何最值类综合压轴题型一:几何最值模型--将军饮马(遛马、造桥)模型题型二:几何最值模型--费马点模型题型三:几何最值模型--胡不归模型题型四:几何最值模型--瓜豆模型(原理)题型五:几何最值模型--阿氏圆模型题型六:几何最值工具--二次函数求最值题型七:几何最值工具--三边关系求最值题型一:几何最值模型--将军饮马(遛马、造桥)模型1.将军饮马问题从本质上来看是由轴对称衍生而来,主要考查转化与化归等的数学思想。在解决将军饮马模型主要依据是:两点之间,线段最短;垂线段最短。2.在解决将军遛马和将军过桥(造桥),不管是横向还是纵向的线段长度(定长),只要将线段按照长度方向平移即可,即可以跨越长度转化为标准的将军饮马模型,再依据同侧做对称点变异侧,异侧直接连线即可。利用数学的转化思想,将复杂模型变成基本模型就简单容易多了,从此将军遛马和将军过桥(造桥)再也不是问题!例1.(2023·广东广州·统考中考真题)如图,正方形的边长为4,点E在边上,且,F为对角线上一动点,连接,,则的最小值为.

变式1.(2023·黑龙江绥化·统考中考真题)如图,是边长为的等边三角形,点为高上的动点.连接,将绕点顺时针旋转得到.连接,,,则周长的最小值是.

变式2.(2023·陕西西安·校考模拟预测)如图,在菱形中,,对角线交于点,,点为的中点,点为上一点,且,点为上一动点,连接,则的最大值为________.

例2.(2022·四川自贡·中考真题)如图,矩形中,,是的中点,线段在边上左右滑动;若,则的最小值为____________.变式1.(2023上·江苏盐城·九年级校联考阶段练习)如图,正方形内接于⊙O,线段在对角线上运动,若⊙O的周长为,,则周长的最小值是.

变式2.(2023·广西·二模)已知,在河的两岸有A,B两个村庄,河宽为4千米,A、B两村庄的直线距离AB=10千米,A、B两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥MN垂直于两岸,M点为靠近A村庄的河岸上一点,则AM+BN的最小值为(

)A.2 B.1+3 C.3+ D.题型二:几何最值模型--费马点模型结论:如图,点M为△ABC内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120°时,MA+MB+MC的值最小。费马点最值模型的辅助线作法:如图,以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.当E、N、M、C四点共线时,MA+MB+MC的值最小,即为EC的长度。例1.(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当的三个内角均小于时,如图1,将绕,点C顺时针旋转得到,连接,

由,可知为①三角形,故,又,故,由②可知,当B,P,,A在同一条直线上时,取最小值,如图2,最小值为,此时的P点为该三角形的“费马点”,且有③;已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.如图3,若,则该三角形的“费马点”为④点.(2)如图4,在中,三个内角均小于,且,已知点P为的“费马点”,求的值;

(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/,a元/,元/,选取合适的P的位置,可以使总的铺设成本最低为___________元.(结果用含a的式子表示)变式1.(2023·江苏·校考三模)如图,四个村庄坐落在矩形ABCD的四个顶点上,公里,公里,现在要设立两个车站E,F,则的最小值为______公里.变式2.(2023·广东广州·一模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC于点D,线段AD上存在一点Q,当QA+QB+QC的值取得最小值,且AQ=2时,则PD=________.题型三:几何最值模型--胡不归模型【模型解读】一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小。(注意与阿氏圆模型的区分)。1),记,即求BC+kAC的最小值.2)构造射线AD使得sin∠DAN=k,,CH=kAC,将问题转化为求BC+CH最小值.3)过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.【解题关键】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。例1.(2023·辽宁锦州·统考中考真题)如图,在中,,,,按下列步骤作图:①在和上分别截取、,使.②分别以点D和点E为圆心,以大于的长为半径作弧,两弧在内交于点M.③作射线交于点F.若点P是线段上的一个动点,连接,则的最小值是.变式1.(2023·广东佛山·校考一模)在边长为1的正方形中,是边的中点,是对角线上的动点,则的最小值为___________.变式2.(2023·江苏宿迁·统考二模)已知中,,则的最大值为.

题型四:几何最值模型--瓜豆模型(动态轨迹问题)瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。动点轨迹基本类型为直线型和圆弧型,本专题受教学进程影响,估只对瓜豆原理中的直线型轨迹作讲解。主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线上运动;瓜在圆周上运动,豆的轨迹也是圆。古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”。例1.(2024·江苏无锡·一模)如图,是边长为6的等边三角形,点E在上且,点D是直线上一动点,将线段绕点E逆时针旋转,得到线段,连接,,下列结论:①的最小值为;

②的最小值是;③当时,;

④当时,.其中正确的有()

A.4个 B.3个 C.2个 D.1个变式1.(2023·江苏镇江·一模)如图,正方形的边长为2,点是正方形对角线所在直线上的一个动点,连接,以为斜边作等腰(点A,E,F按逆时针排序),则长的最小值为()A. B.1 C. D.2变式2.(2024·江苏徐州·一模)如图,直角中,,,,点是边上一点,将绕点顺时针旋转到点,则长的最小值是.例2.(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,的一条直角边在x轴上,点A的坐标为;中,,连接,点M是中点,连接.将以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段的最小值是(

A.3 B. C. D.2变式1.(2023·四川宜宾·统考中考真题)如图,是正方形边的中点,是正方形内一点,连接,线段以为中心逆时针旋转得到线段,连接.若,,则的最小值为.

变式2.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.变式3.(2022·江苏宿迁·中考真题)如图,在矩形中,=6,=8,点、分别是边、的中点,某一时刻,动点从点出发,沿方向以每秒2个单位长度的速度向点匀速运动;同时,动点从点出发,沿方向以每秒1个单位长度的速度向点匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接,过点作的垂线,垂足为.在这一运动过程中,点所经过的路径长是.题型五:几何最值模型--阿氏圆模型【模型解读】如图1所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。如图3所示:例1.(2023·山东·九年级专题练习)如图,在中,,,,圆C半径为2,P为圆上一动点,连接最小值__________.最小值__________.变式1.(2023春·江苏·九年级校考阶段练习)如图,正方形的边长为4,的半径为2,为上的动点,则的最大值是.变式2.(2023·江苏苏州·苏州市二模)如图,在中,点A、点在上,,,点在上,且,点是的中点,点是劣弧上的动点,则的最小值为.题型六:几何最值工具--二次函数求最值构造二次函数来确定几何图形中的有关的长度、面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质求解即可。例1.(2024·江苏扬州·一模)某数学小组在一次数学探究活动过程中,经历了如下过程:如图,正方形中,在边上任意一点(不与点重合),以为旋转中心,将逆时针旋转,得到,连接,,分别交于点,.(1)当时,的度数为______°;(2)连接,当P为中点时,求证:;(3)若,是否存在最小值?如果存在,求此最小值:如果不存在,说明理由.变式1.(2023年湖南省常德市三模数学试题)如图,在中,,,D为边上一动点(B点除外),以为一边在边上方作正方形,连接,则的面积的最大值为(

A. B. C. D.变式2.(2022·江苏镇江·中考真题)已知,点、、、分别在正方形的边、、、上.(1)如图1,当四边形是正方形时,求证:;(2)如图2,已知,,当、的大小有_________关系时,四边形是矩形;(3)如图3,,、相交于点,,已知正方形的边长为16,长为20,当的面积取最大值时,判断四边形是怎样的四边形?证明你的结论.题型七:几何最值工具--三边关系求最值动点最值问题一直是中考数学中的难题,解题的关键在于化动为静,将问题进行合理转化,利用与之相关的知识点进行分析和解答,在运用三角形三边关系解决最值问题中,解题的关键在于构造三角形,一般情况下,需要找出两条固定线段,与需要求的线段构造三角形,然后利用三角形三边关系进行分析和解答即可。例1.(23-24九年级下·江苏宿迁·阶段练习)如图,在中,已知,,点P是线段上的动点,连接,在上有一点M,始终保持,连接,则的最小值为.变式1.(2023·江苏徐州·中考真题)如图,在中,,点在边上.将沿折叠,使点落在点处,连接,则的最小值为.

变式2.(2023·四川南充·校考二模)如图,的半径是5,点A是圆周上一定点,点B在上运动,且,,垂足为点C,连接,则的最小值是()A. B. C. D.课后训练1.(2022·山东泰安·中考真题)如图,,点M、N分别在边上,且,点P、Q分别在边上,则的最小值是(

)A. B. C. D.2.(2022·内蒙古赤峰·统考中考真题)如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是(

)A.3 B.5 C. D.3.(2023·湖北武汉·校考模拟预测)如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则EFED的最小值为()A.6 B.4 C.4 D.64.(2023年江苏二模数学试卷)如图,在中,,为边上一动点(点除外),把线段绕着点沿着顺时针的方向旋转90°至,连接,则面积的最大值为(

)A.16 B.8 C.32 D.105.(2023·江苏宿迁·沭阳县怀文中学校联考一模)如图,已知四边形中,,,点分别是边上的两个动点,且,过点B作于G,连接,则的最小值是(

A. B. C. D.6.(2023·江苏盐城·校考一模)如图,在中,已知.,点P是线段上的动点,连接,在上有一点M,始终保持,连接,则的最小值为(

A. B. C. D.7.(2022·湖南湘西·统考中考真题)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()

A.24 B.22 C.20 D.188.(2023·江苏无锡·中考真题)如图中,,为中点,若点为直线下方一点,且与相似,则下列结论:①若,与相交于,则点不一定是的重心;②若,则的最大值为;③若,则的长为;④若,则当时,取得最大值.其中正确的为(

A.①④ B.②③ C.①②④ D.①③④9.(2023·江苏盐城·一模)已知,其中,,,M、N分别为、的中点,将两个三角形按图①方式摆放,点F从点A开始沿方向平移至点E与点C重合结束(如图②),在整个平移过程中,的取值范围是()A. B. C. D.10.(2022·江苏泰州·中考真题)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2,d3,则d1+d2+d3的最小值为(

)A. B. C. D.11.(2023·江苏常州·模拟预测)如图,在菱形中,,点P是菱形内或边上的一点,且,连接,则面积的最小值为()A. B. C. D.12.(2023·辽宁盘锦·统考中考真题)如图,四边形是矩形,,,点P是边上一点(不与点A,D重合),连接.点M,N分别是的中点,连接,,,点E在边上,,则的最小值是(

A. B.3 C. D.13.(2023秋·河南南阳·九年级校联考期末)如图,在边长为的正方形中将沿射线平移,得到,连接、.求的最小值为______.14.(2023春·湖北武汉·九年级校考阶段练习)如图,点M是矩形内一点,且,,N为边上一点,连接、、,则的最小值为______.15.(2023上·江苏连云港·九年级校考阶段练习)已知矩形为矩形内一点,且,若点绕点逆时针旋转到点,则的最小值为.

16.(2023·湖北武汉·九年级校考阶段练习)如图,在边长为6的正方形中,M为上一点,且,N为边上一动点.连接,将沿翻折得到,点P与点B对应,连接,则的最小值为.

17.(2023·四川广元·

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论