版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门科技中学2025届高二上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则2.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:33.已知圆M的圆心在直线上,且点,在M上,则M的方程为()A. B.C. D.4.设双曲线:的左、右焦点分别为、,P为C上一点,且,,则双曲线的渐近线方程为()A. B.C. D.5.已知椭圆的一个焦点坐标是,则()A.5 B.2C.1 D.6.给出如下四个命题正确的是()①方程表示的图形是圆;②椭圆的离心率;③抛物线的准线方程是;④双曲线的渐近线方程是A.③ B.①③C.①④ D.②③④7.已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4 B.5C.6 D.78.已知点是椭圆的左右焦点,椭圆上存在不同两点使得,则椭圆的离心率的取值范围是()A. B.C. D.9.已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0 B.1C.2 D.310.有关椭圆叙述错误的是()A.长轴长等于4 B.短轴长等于4C.离心率为 D.的取值范围是11.已知等差数列的公差为,则“”是“数列为单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数的点的轨迹叫做圆锥曲线;当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.现有方程表示的曲线是双曲线,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量X服从正态分布,若,则______14.已知平面的一个法向量为,点为内一点,则点到平面的距离为___________.15.如图,抛物线上的点与轴上的点构成等边三角形,,,其中点在抛物线上,点的坐标为,,猜测数列的通项公式为________16.函数的图象在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中,分别为角的对边,且(1)求;(2)若为边的中点,,求的面积18.(12分)已知椭圆的离心率为,短轴长为2(1)求椭圆的方程;(2)设过点且斜率为的直线与椭圆交于不同的两点,,求当的面积取得最大值时的值19.(12分)设圆的圆心为A,直线l过点且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E(1)判断与题中圆A的半径的大小关系,并写出点E的轨迹方程;(2)过点作斜率为,的两条直线,分别交点E的轨迹于M,N两点,且,证明:直线MN必过定点20.(12分)如图,在长方体中,,.点E在上,且(1)求证:平面;(2)求二面角的余弦值21.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x经过点A(1,2),直线l:y=kx+b与抛物线C交于M,N两点.(1)若,求直线l的方程;(2)当AM⊥AN时,若对任意满足条件的实数k,都有b=mk+n(m,n为常数),求m+2n的值.22.(10分)已知函数的图象在处的切线方程为.(1)求的解析式;(2)若关于的方程在上有解,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.2、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.3、C【解析】由题设写出的中垂线,求其与的交点即得圆心坐标,再应用两点距离公式求半径,即可得圆的方程.【详解】因为点,在M上,所以圆心在的中垂线上由,解得,即圆心为,则半径,所以M的方程为故选:C4、B【解析】根据双曲线定义结合,求得,在中,利用余弦定理求得之间的关系,即可得出答案.【详解】解:因为在双曲线中,因为,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以双曲线的渐近线方程为.故选:B.5、C【解析】根据题意椭圆焦点在轴上,且,将椭圆方程化为标准形式,从而得出,得出答案.【详解】由焦点坐标是,则椭圆焦点在轴上,且将椭圆化为,则由,焦点坐标是,则,解得故选:C6、A【解析】对选项①,根据圆一般方程求解即可判断①错误,对选项②,求出椭圆离心率即可判断②错误,对③,求出抛物线渐近线即可判断③正确,对④,求出双曲线渐近线方程即可判断④错误。【详解】对于①选项,,,故①错误;对于②选项,由题知,所以,所以离心率,故②错误;对于③选项,抛物线化为标准形式得抛物线,故准线方程是,故③正确;对于④选项,双曲线化为标准形式得,所以,焦点在轴上,故渐近线方程是,故④错误.故选:A7、C【解析】根据题干条件得到相似,进而得到,求出点P到准线l的距离.【详解】由题意得:,准线方程为,因为,所以,故点P到准线l的距离为.故选:C8、C【解析】先设点,利用向量关系得到两点坐标之间的关系,再结合点在椭圆上,代入方程,消去即得,根据题意,构建的齐次式,解不等式即得结果.【详解】设,由得,,,即,由在椭圆上,故,即,消去得,,根据椭圆上点满足,又两点不同,可知,整理得,故,故.故选:C.【点睛】关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到一组等量关系(齐次式),进而求解离心率或范围.9、B【解析】用向量共线或共面的基本定理即可判断.【详解】若与,与共线,,则不能判定,故①错误;若非零向量共面,则向量可以在一个与组成的平面平行的平面上,故②错误;不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;,∴与共面,故不能组成一个基底,故④错误;故选:C.10、A【解析】根据题意求出,进而根据椭圆的性质求得答案.【详解】椭圆方程化为:,则,则长轴长为8,短轴长为4,离心率,x的取值范围是.即A错误,B,C,D正确.故选:A.11、C【解析】利用等差数列的定义和数列单调性的定义判断可得出结论.【详解】若,则,即,此时,数列为单调递增数列,即“”“数列为单调递增数列”;若等差数列为单调递增数列,则,即“”“数列为单调递增数列”.因此,“”是“数列为单调递增数列”的充分必要条件.故选:C.12、C【解析】对方程进行化简可得双曲线上一点到定点与定直线之比为常数,进而可得结果.【详解】已知方程可以变形为,即,∴其表示双曲线上一点到定点与定直线之比为常数,又由,可得,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##25【解析】根据正态分布曲线的对称性即可求得结果.【详解】,,又,,.故答案为:.14、1【解析】利用空间向量求点到平面的距离即可.【详解】,,∴则点P到平面的距离为.故答案为:1.15、【解析】求出,,,,,,可猜测,利用累加法,即可求解【详解】的方程为,代入抛物线可得,同理可得,,,,可猜测,证明:记三角形的边长为,由题意可知,当时,在抛物线上,可得,当时,,两式相减得:化简得:,则数列是等差数列,,,,,故答案为:16、【解析】求导得到,计算,根据点斜式可得到切线方程.【详解】因此,则,故,又点在函数的图象上,故切线方程为:,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用正弦定理化边为角可得,化简可得,结合,即得解;(2)在中,由余弦定理得,可得,利用面积公式即得解【详解】(1)中由正弦定理及条件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)为边的中点,,,得,中,由余弦定理得,∴,∴,∵,∴,18、(1);(2).【解析】(1)由短轴长得,由离心率处也的关系,从而可求得,得椭圆方程;(2)设,,直线的方程为,代入椭圆方程应用韦达定理得,由弦长公式得弦长,求出原点到直线的距离,得出三角形面积为的函数,用换元法,基本不等式求得最大值,得值【详解】解:(1)由题意得,,所以,,椭圆的方程为(2)直线的方程为,代入椭圆的方程,整理得由题意,,设,则,弦长,点到直线的距离,所以的面积,令,则,当且仅当时取等号.所以,对应的,可解得,满足题意19、(1)与半径相等,(2)证明见解析【解析】(1)依据椭圆定义去求点E的轨迹方程事半功倍;(2)直线MN要分为斜率存在的和不存在的两种情况进行讨论,由设而不求法把条件转化为直线MN过定点的条件即可解决.【小问1详解】圆即为,可得圆心,半径,由,可得,由,可得,即为,即有,则,所以其与半径相等.因为,故E的轨迹为以A,B为焦点的椭圆(不包括左右顶点),且有,,即,,,则点E的轨迹方程为;【小问2详解】当直线MN斜率不存在时,设直线方程为,则,,,,则,∴,此时直线MN的方程为当直线MN斜率存在时,设直线方程为:,与椭圆方程联立:,得,设,,有则将*式代入化简可得:,即,∴,此时直线MN:,恒过定点又直线MN斜率不存在时,直线MN:也过,故直线MN过定点.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。20、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别写出,,的坐标,证明,,即可得证;(2)由(1)知,的法向量为,直接写出平面法向量,按照公式求解即可.【小问1详解】在长方体中,以为坐标原点,所在直线分别为轴,轴,轴建立如图所示空间直角坐标系因为,,所以,,,,,则,,,所以有,,则,,又所以平面小问2详解】由(1)知平面的法向量为,而平面法向量为所以,由图知二面角为锐二面角,所以二面角的余弦值为21、(1)(2)3或【解析】(1)由可得,则可得直线为,设,然后将直线方程代入抛物线方程中消去,再利用根与系数的关系,由可得,三个式子结合可求出,从而可得直线方程,(2)将直线方程代入抛物线方程中消去,再利用根与系数的关系表示出,再结合直线方程表示出,由AM⊥AN可得,化简结合前面的式子可求出或,从而可可求出的值,进而可求得答案【小问1详解】因为A(1,2),,所以,则直线为,设,由,得,由,得则,因为,所以,所以,所以,所以,解得,所以直线的方程为,即,【小问2详解】设,由,得,由,得,则,所以,,因为AM⊥AN,所以,所以,即,所以,所以,所以或,所以或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公软件培训
- 《安全气囊》课件
- 儿童医疗保健
- 《员工职业规划培训》课件
- 《员工关系案例》课件
- 《呼吸囊的使用》课件
- 《组运营商体系》课件
- 多处外伤的急救护理
- 《天狮牙膏系列宣讲》课件
- 《述职报告模板》课件
- 2024年深圳市福田区选用机关事业单位辅助人员和社区专职工作者365人高频难、易错点500题模拟试题附带答案详解
- 助剂化学及工艺学复习提纲应化
- CNAS-GL004:2018《标准物质_标准样品的使用指南》(2019-2-20第一次修订)
- 堤防工程监理总结报告
- 第五讲新闻评论的结构与节奏
- 护士长竞聘演讲ppt
- 进入重庆市特种设备信息化管理平台
- 意象对话放松引导词2[生活经验]
- 郦波 一生不可错过的唯美诗词
- 高速公路安全生产标准化指南1
- 学科融合课题研究实施方案
评论
0/150
提交评论