版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市肥东县新城高升学校2025届高一上数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义域为()A.(0,2] B.[0,2]C.[0,2) D.(0,2)2.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-43.为了得到函数的图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位4.给定函数①;②;③;④,其中在区间上单调递减的函数的序号是()A.①② B.②③C.③④ D.①④5.“”是“”的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件6.已知是定义在上的奇函数且单调递增,,则的取值范围是()A. B.C. D.7.已知函数,则在下列区间中必有零点的是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)8.若方程则其解得个数为()A.3 B.4C.6 D.59.“,”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知函数(,),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则___________;若存在,满足,则的取值范围是___________.12.已知点,点P是圆上任意一点,则面积的最大值是______.13.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.14.函数满足,则值为_____.15.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.16.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知角的终边过点,且,求的值;(2)已知,,且,求.18.已知向量,,函数,且的图像过点.(1)求的值;(2)将的图像向左平移个单位后得到函数的图像,若图像上各点最高点到点的距离的最小值为1,求的单调递增区间.19.已知函数.(1)求函数的周期和单调递减区间;(2)将的图象向右平移个单位,得到的图象,已知,,求值.20.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.21.已知角的终边经过点(1)求值;(2)求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据对数函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:,故选:A2、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题3、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x的图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)图象变换规律的简单应用,属于基础题4、B【解析】根据指对幂函数性质依次判断即可得答案.【详解】解:对于①,在上单调递增;对于②,在上单调递减;对于③,时,在上单调递减;对于④,在上单调递增;故在区间上单调递减的函数的序号是②③故选:B5、D【解析】求得的解集,结合充分条件、必要条件的判定方法,即可求解.【详解】由,可得或,所以“”是“或”成立的充分不必要条件,所以“”是“”必要不充分条件.故选:D.6、A【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解.【详解】由题意,函数是定义在上的奇函数,所以,则不等式,可得,又因为单调递增,所以,解得,故选:.【点睛】求解函数不等式的方法:1、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.7、B【解析】根据存在零点定理,看所给区间的端点值是否异号,,,,所以,那么函数的零点必在区间考点:函数的零点8、C【解析】分别画出和的图像,即可得出.【详解】方程,即,令,,易知它们都是偶函数,分别画出它们的图像,由图可知它们有个交点.故选:.【点睛】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题.9、A【解析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】,时,,,时,,所以“,”是“”的充分而不必要条件,故选:.10、C【解析】由已知得,,且,解之讨论k,可得选项.【详解】因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除A,B;又,且,解得,当时,不满足,当时,符合题意,当时,符合题意,当时,不满足,故C正确,D不正确,故选:C.【点睛】关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】若,则,然后分、两种情况求出的值即可;画出的图象,若存在,满足,则,其中,然后可得,然后可求出答案.【详解】因为,所以若,则,当时,,解得,满足当时,,解得,不满足所以若,则的图象如下:若存在,满足,则,其中所以因为,所以,,所以故答案为:;12、【解析】由点可得直线AB的方程及的值,可得圆心到直线AB的距离d及P到直线AB的最大距离,可得面积的最大值是.【详解】解:直线AB的方程为,圆心到直线AB的距离,点P到直线AB的最大距离为.故面积的最大值是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式及两点间距离公式等,需综合运用所学知识求解.13、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想14、【解析】求得后,由可得结果.【详解】,,.故答案为:.15、【解析】设参加数学、物理、化学小组的同学组成的集合分别为,、,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为,、,同时参加数学和化学小组的人数为,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为,如图所示:由图可知:,解得,所以同时参加数学和化学小组有人.故答案为:.16、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用三角函数的定义求出,再根据三角函数的定义求出、即可得解;(2)根据同角三角函数的基本关系求出、,再根据两角差的余弦公式求出,即可得解;【详解】解:(1)因为角的终边过点,且,所以,解得,即,所以,所以,,所以;(2)因为,,所以,又,,所以,所以所以,因为所以18、(1);(2).【解析】(1)利用两个向量的数量积公式,两角和的正弦公式化简函数的解析式,再把点代入,求得的值(2)根据函数的图象变换规律求得的解析式,再利用正弦函数的单调性,求得的单调递增区间【详解】(1)已知,过点解得:;(2)左移后得到设的图象上符合题意的最高点为,解得,解得,,,的单调增区间为.【点睛】本题主要考查了三角函数与向量的简单运算知识点,以及函数的图象变换,属于中档题.19、(1),(2)【解析】(1)首先利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)首先根据三角函数的平移变换规则求出的解析式,根据,得到,再根据同角三角函数的基本关系求出,最后根据两角和的余弦公式计算可得;【小问1详解】解:∵,即,所以函数的最小正周期,令,解得.故函数的单调递减区间为.【小问2详解】解:由题意可得,∵,∴,∵,所以,则,因此.20、(1);(2)【解析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学校教师管理条(二篇)
- 2024年工会岗位职责工会工作职范本(二篇)
- 2024年安全环保奖惩制度范文(二篇)
- 2024年安全生产培训计划例文(五篇)
- 2024年学校教学质量和特殊贡献奖惩办法范文(二篇)
- 2024年工程部主管岗位职责(三篇)
- 2024年单位办公室卫生管理制度模版(二篇)
- 2024年叉车租赁合同格式范本(二篇)
- 2024年安全生产教育培训管理制度(二篇)
- 2024年年终总结范例(四篇)
- 研究小米企业的环境波特五力模型进行分析
- 初中数学科普读物
- 抖音运营结案汇报方案
- 新生儿超声心动图课件
- 异常处理报告
- 中建“百项新技术”更新推广应用清单附表
- 安全经验分享-冬季冰雪道路安全行车事故教训
- 煤矿标准化安全培训
- 文言文二则《囊萤夜读》一等奖创新教案
- 冠脉CTA检查护理课件
- 建筑工程法规知识培训
评论
0/150
提交评论