




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆库尔勒市新疆兵团第二师华山中学2025届数学高二上期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系xOy中,过x轴上的点P分别向圆和圆引切线,记切线长分别为.则的最小值为()A.2 B.3C.4 D.52.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列3.若正整数N除以正整数m后的余数为n,则记为,如.如图所示的程序框图的算法源于我国古代闻名中外的“中国剩余定理”.执行该程序框图,则输出的i等于()A.7 B.10C.13 D.164.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则5.在的展开式中,的系数为()A. B.5C. D.106.2021年4月29日,中国空间站天和核心舱发射升空,这标志着中国空间站在轨组装建造全面展开,我国载人航天工程“三步走”战略成功迈出第三步.到今天,天和核心舱在轨已经九个多月.在这段时间里,空间站关键技术验证阶段完成了5次发射、4次航天员太空出舱、1次载人返回、1次太空授课等任务.一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知天和核心舱在一个椭圆轨道上飞行,它的近地点高度大约351km,远地点高度大约385km,地球半径约6400km,则该轨道的离心率为()A. B.C. D.7.在数列中,,则()A. B.C.2 D.18.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.09.已知双曲线的一条渐近线方程为,且与椭圆有公共焦点.则C的方程为()A. B.C. D.10.已知空间向量,,,则()A.4 B.-4C.0 D.211.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.012.已知等差数列的前项和为,,,,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.九连环是中国的一种古老智力游对,它用九个圆环相连成串,环环相扣,以解开为胜,趣味无穷.中国的末代皇帝溥仪(1906-1967)也曾有一个精美的由九个翡翠缳相连的银制的九连环(如图).现假设有个圆环,用表示按照某种规则解下个圆环所需的银和翠玉制九连环最少移动次数,且数列满足,,则___________.14.若函数的递增区间是,则实数______.15.的展开式中的常数项为_______.16.如图,椭圆左顶点为轴上一点满足,且线段与椭圆交于点是以为底边的等腰三角形,则椭圆离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.求证:(1)平面;(2)平面.18.(12分)已知二次函数.(1)若时,不等式恒成立,求实数a的取值范围;(2)解关于x的不等式(其中).19.(12分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和20.(12分)已知等差数列的前项和为,.(1)求数列的通项公式;(2)求的最大值及相应的的值.21.(12分)已知椭圆过点,且离心率(1)求椭圆的方程;(2)设点为椭圆的左焦点,点,过点作的垂线交椭圆于点,,连接与交于点①若,求;②求的值22.(10分)已知公差不为0的等差数列满足:且成等比数列(1)求数列的通项公式;(2)记为数列的前n项和,求证是等差数列
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解.详解】,圆心,半径,圆心,半径设点P,则,即到与两点距离之和的最小值,当、、三点共线时,的和最小,即的和最小值为.故选:D【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.2、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题3、C【解析】根据“中国剩余定理”,进而依次执行循环体,最后求得答案.【详解】由题意,第一步:,余数不为1;第二步:,余数不为1;第三步:,余数为1,执行第二个判断框,余数不为2;第四步:,执行第一个判断框,余数为1,执行第二个判断框,余数为2.输出的i值为13.故选:C.4、C【解析】利用不等式的性质结合特殊值法依次判断即可【详解】当c=0时,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1时,,D不成立;由a>|b|知a>0,所以a2>b2,C正确故选:C5、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项6、A【解析】根据远地点和近地点,求出轨道即椭圆的半长轴和半焦距,即可求得答案.【详解】设椭圆的半长轴为a,半焦距为c.则根据题意得;解得,故该轨道即椭圆的离心率为,故选:A7、A【解析】利用条件可得数列为周期数列,再借助周期性计算得解.【详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.8、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题9、B【解析】根据已知和渐近线方程可得,双曲线焦距,结合的关系,即可求出结论.【详解】因为双曲线的一条渐近线方程为,则①.又因为椭圆与双曲线有公共焦点,双曲线的焦距,即c=3,则a2+b2=c2=9②.由①②解得a=2,b=,则双曲线C的方程为.故选:B.10、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.11、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B12、A【解析】由可求得,利用可构造方程求得.【详解】,,,,,解得:.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、684【解析】利用累加法可求得的值.【详解】当且时,,所以,.故答案为:.14、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.15、15【解析】先求出二项式展开式的通项公式,然后令的次数为0,求出的值,从而可得展开式中的常数项【详解】二项式展开式的通项公式为,令,得,所以展开式中的常数项为故答案为:1516、##【解析】根据题设条件可得坐标,代入椭圆方程后可求椭圆的离心率.【详解】因为,故,,且在轴的正半轴上,则在第二象限中,故,代入椭圆方程有:即,故,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)连结、,交于点,连结,通过即可证明;(2)通过,
可证平面,即得,进而通过平面得,结合即证.详解】证明:(1)连结、,交于点,连结,底面正方形,∴是中点,点是的中点,.平面,
平面,∴平面.(2),点是的中点,.底面是正方形,侧棱底面,∴,
,且
,∴平面,∴,又,∴平面,∴,,,平面.【点睛】本题考查线面平行和线面垂直的证明,属于基础题.18、(1)(2)答案见解析【解析】(1)当时将原不等式变形为,根据基本不等式计算即可;(2)将原不等式化为,求出参数a分别取值、、时的解集.【小问1详解】不等式即为:,当时,不等式可变形为:,因为,当且仅当时取等号,所以,所以实数a的取值范围是;【小问2详解】不等式,即,等价于,转化为;当时,因为,所以不等式的解集为;当时,因为,所以不等式的解集为;当时,因为,所以不等式的解集为;综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.19、(1)或(2)【解析】(1)利用等差数列通项公式,可构造方程组求得,由此可得通项公式;(2)由(1)可得,利用分组求和法,结合等差等比求和公式可得结果.【小问1详解】设等差数列的公差为,则,解得:或,当时,;当时,.综上,或【小问2详解】由(1)当数列为递增数列,则,设,.20、(1)(2)当或时,有最大值是20【解析】(1)用等差数列的通项公式即可.(2)用等差数列的求和公式即可.【小问1详解】在等差数列中,∵,∴,解得,∴;【小问2详解】∵,∴,∴当或时,有最大值是2021、(1)(2)①,②【解析】(1)由题意得解方程组求出,从而可得椭圆的方程,(2)①由题意可得的方程为,再与椭圆方程联立,解方程组求出的坐标,从而可求出;②当时,,当时,直线方程为,与椭圆方程联立,消去,利用根与系数的关系,结合中点坐标公式可得中点的坐标,再将直线的方程与方程联立,求出点的坐标,从而可求出的值【小问1详解】由题意得解得,所以椭圆的方程为.【小问2详解】①当时,直线的斜率,则的垂线的方程为由得解得故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超神数学-高考数学总复习基础篇(一轮)(练习册)专题07函数的单调性(含答案或解析)
- 全球厚膜光刻胶剥离液行业市场分析及前景预测报告(2025-2031)
- 福瑞股份MASH“卖水人”高成长通道即将打开
- 2025年4月全国土地市场报告
- 2025年中期银行业重视价值回归银行有望迎来重估长牛
- 绿色金融产品创新对绿色金融产业链的影响分析报告
- 2025年电商平台售后服务创新案例分析与启示报告
- 共享办公工位预订系统在灵活办公需求中的创新模式探讨报告
- 宠物消费市场细分需求洞察2025年宠物用品市场细分需求分析报告
- 2025年学前教育机构师资队伍教师评价与激励机制报告
- 基于C#的WinForm程序设计学习通超星期末考试答案章节答案2024年
- 大隐1#综合楼安装全专业手工计算表
- 《一元一次方程》参考课件
- Python语言基础与应用学习通超星期末考试答案章节答案2024年
- 消除“艾梅乙”医疗歧视-从我做起
- 《阿凡达》电影赏析
- GB/T 44625-2024动态响应同步调相机技术要求
- 商业伦理与职业道德学习通超星期末考试答案章节答案2024年
- 系统商用密码应用方案v5-2024(新模版)
- 家具厂质量管理体系手册
- 核磁共振(NMR)讲课
评论
0/150
提交评论