甘南市重点中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
甘南市重点中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
甘南市重点中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
甘南市重点中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
甘南市重点中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘南市重点中学2025届高一数学第一学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则a,b,c的大小关系是()A. B.C. D.2.已知是第四象限角,是角终边上的一个点,若,则()A.4 B.-4C. D.不确定3.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+C.2+ D.1+4.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.5.已知,则()A.-3 B.-1C.1 D.36.已知集合,,若,则的子集个数为A.14 B.15C.16 D.327.设全集,,,则()A. B.C. D.8.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.9.已知幂函数的图象过点,若,则实数的值为()A. B.C. D.410.定义在上的奇函数,当时,,则的值域是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知平面向量,,若,则______12.已知扇形的半径为4,圆心角为,则扇形的面积为___________.13.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是__________14.已知集合,,则集合中的元素个数为___________.15.已知函数f(x)=sin(ωx+)(其中ω>0),若x=为函数f(x)的一个零点,且函数f(x)在(,)上是单调函数,则ω的最大值为______16.不等式tanx+三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点(1)求函数的解析式;(2)若关于x的方程,有解,求实数a的取值范围;(3)若对任意的,不等式恒成立,求实数k的取值范围18.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围19.已知函数,.(1)对任意的,恒成立,求实数k的取值范围;(2)设,证明:有且只有一个零点,且.20.如图所示,某居民小区内建一块直角三角形草坪,直角边米,米,扇形花坛是草坪的一部分,其半径为20米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设两条小路和,考虑到小区整体规划,要求M、N在斜边上,O在弧上(点O异于D,E两点),,.(1)设,记,求的表达式,并求出此函数的定义域.(2)经核算,两条路每米铺设费用均为400元,如何设计的大小,使铺路的总费用最低?并求出最低总费用.21.已知,(1)求和的值(2)求以及的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】比较a、b、c与0和1的大小即可判断它们之间的大小.【详解】,,,故故选:C.2、B【解析】利用三角函数的定义求得.【详解】依题意是第四象限角,所以,.故选:B3、B【解析】根据圆心到直线的距离加上圆的半径即为圆上点到直线距离的最大值求解出结果.【详解】因为圆心为,半径,直线的一般式方程为,所以圆上点到直线的最大距离为:,故选:B【点睛】本题考查圆上点到直线的距离的最大值,难度一般.圆上点到直线的最大距离等于圆心到直线的距离加上圆的半径,最小距离等于圆心到直线的距离减去半径.4、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题5、D【解析】利用同角三角函数基本关系式中的技巧弦化切求解.【详解】.故选:D【点睛】本题考查了同角三角函数基本关系中的弦化切技巧,属于容易题.6、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C7、B【解析】先求出集合B的补集,再求【详解】因为,,所以,因为,所以,故选:B8、C【解析】利用扇形的面积公式即可求解.【详解】设扇形的半径为,则扇形的面积,解得:,故选:C9、D【解析】根据已知条件,推出,再根据,即可得出答案.【详解】由题意得:,解得,所以,解得:,故选:D【点睛】本题考查幂函数的解析式,属于基础题.10、B【解析】根据函数为奇函数得到,,再计算时,得到答案.【详解】定义在上的奇函数,则,;当时,,则当时,;故的值域是故选:【点睛】本题考查了函数的值域,根据函数的奇偶性得到时,是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出,根据,即,进行数量积的坐标运算,列出方程,即可求解【详解】由题意知,平面向量,,则;因为,所以,解得故答案为【点睛】本题主要考查了向量的坐标运算,以及向量的数量积的应用,其中解答中根据平面向量垂直的条件,得到关于的方程是解答的关键,着重考查了运算与求解能力,属于基础题.12、【解析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积【详解】根据扇形的弧长公式可得,根据扇形的面积公式可得故答案为:13、【解析】利用函数的图象变换规律,先放缩变换,再平移变换,从而可得答案【详解】将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数的图象;再将的图象向左平移个单位,得到的图象对应的解析式是的图象,故答案为:14、【解析】解不等式确定集合,解方程确定集合,再由交集定义求得交集后可得结论【详解】由题意,,∴,只有1个元素故答案为:115、【解析】由题意,为函数的一个零点,可得,且函数在,上是单调函数可得,即可求的最大值【详解】解:由题意,为函数的一个零点,可得,则.函数在,上是单调函数,可得,即.当时,可得的最大值为3故答案为3.【点睛】本题考查了正弦型三角函数的图象及性质的应用,属于中档题.16、kπ,π4【解析】根据正切函数性质求解、【详解】由正切函数性质,由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案为:[kπ,kπ+π4三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)设出的解析式,根据点求得的解析式.根据为奇函数,求得解析式.(2)根据的单调性和值域,求得的取值范围.(3)证得的单调性,结合的奇偶性化简不等式,得到对任意的,,利用二次函数的性质求得的取值范围.【详解】(1)设(,且),则,所以(舍去)或,所以,又为奇函数,且定义域为R,所以,即,所以,所以(2)由于为上减函数,由于,所以,所以,所以.(3)设,则因为,所以,所以,所以,即,所以函数在R上单调递减要使对任意的,恒成立,即对任意的,恒成立因为为奇函数,所以恒成立又因函数在R上单调递减,所以对任意的,恒成立,即对任意的,恒成立令,,时,成立;时,所以,,,无解综上,【点睛】本小题主要考查指数函数解析式的求法,考查分式型函数值域的求法,考查利用函数的奇偶性和单调性解函数不等式,考查二次函数的性质,考查分类讨论的数学思想方法,综合性较强,属于难题.18、(1);(2)单调递减;(3)【解析】(1)函数为奇函数,则,再用待定系数法即可求出;(2)作差法:任意的两个实数,证明出;(3)要使则试题解析:(1)所以(2)由(1)问可得在区间上是单调递减的证明:设任意的两个实数又,,在区间上是单调递减的;(3)由(2)知在区间上的最小值是要使则考点:1、待定系数法;2、函数的单调性;3、不等式恒成立问题.19、(1);(2)证明见解析.【解析】(1)利用的单调性以及对数函数的单调性,即可求出的范围(2)对进行分类讨论,分为:和,利用零点存在定理和数形结合进行分析,即可求解【详解】解:(1)因为是增函数,是减函数,所以在上单调递增.所以的最小值为,所以,解得,所以实数k的取值范围是.(2)函数的图象在上连续不断.①当时,因为与在上单调递增,所以在上单调递增.因为,,所以.根据函数零点存在定理,存在,使得.所以在上有且只有一个零点.②当时,因为单调递增,所以,因为.所以.所以在上没有零点.综上:有且只有一个零点.因为,即,所以,.因为在上单调递减,所以,所以.【点睛】关键点睛:对进行分类讨论时,①当时,因为与在上单调递增,再结合零点存在定理,即可求解;②当时,恒成立,所以,在上没有零点;最后利用,得到,然后化简可求解。本题考查函数的性质,函数的零点等知识;考查学生运算求解,推理论证的能力;考查数形结合,分类与整合,函数与方程,化归与转化的数学思想,属于难题20、(1),;(2),.【解析】(1)过作的垂线交与两点,求出,即可求出的表达式,并求出此函数的定义域.(2)利用辅助角公式化简,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论