版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
乐都县第一中学2025届数学高二上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在下列命题中正确的是()A.已知是空间三个向量,则空间任意一个向量总可以唯一表示为B.若所在的直线是异面直线,则不共面C.若三个向量两两共面,则共面D.已知A,B,C三点不共线,若,则A,B,C,D四点共面2.已知实数a,b,c满足,,则a,b,c的大小关系为()A. B.C. D.3.当我们停放自行车时,只要将自行车旁的撑脚放下,自行车就稳了,这用到了()A.三点确定一平面 B.不共线三点确定一平面C.两条相交直线确定一平面 D.两条平行直线确定一平面4.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列5.是等差数列,且,,则的值()A. B.C. D.6.已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A. B.C. D.7.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆8.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.若数列满足,,则数列的通项公式为()A. B.C. D.10.若椭圆的右焦点与抛物线的焦点重合,则椭圆的离心率为()A. B.C. D.11.如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()A. B.C.2 D.12.椭圆的长轴长是()A.3 B.4C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.与双曲线有共同的渐近线,并且经过点的双曲线方程是______14.已知、是椭圆()长轴的两个端点,、是椭圆上关于轴对称的两点,直线,的斜率分别为,().若椭圆的离心率为,则的最小值为______15.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是________16.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为____________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,18.(12分)(1)若在是减函数,求实数m的取值范围;(2)已知函数在R上无极值点,求a的值.19.(12分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.20.(12分)设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围21.(12分)在平面直角坐标系xOy中,曲线的参数方程为,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)已知,曲线与曲线相交于A,B两点,求.22.(10分)如图,在四棱锥中,四边形ABCD为正方形,PA⊥底面ABCD,,M,N分别为AB和PC的中点(1)求证:MN//平面PAD;(2)求平面MND与平面PAD的夹角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对于A,利用空间向量基本定理判断,对于B,利用向量的定义判断,对于C,举例判断,对于D,共面向量定理判断【详解】对于A,若三个向量共面,在平面,则空间中不在平面的向量不能用表示,所以A错误,对于B,因为向量是自由向量,是可以自由平移,所以当所在的直线是异面直线时,有可能共面,所以B错误,对于C,当三个向量两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C错误,对于D,因为A,B,C三点不共线,,且,所以A,B,C,D四点共面,所以D正确,故选:D2、A【解析】利用对数的性质可得,,再构造函数,利用导数判断,再构造,利用导数判断出函数的单调性,再由单调性即可求解.【详解】由题意可得均大于,因为,所以,所以,且,令,,当时,,所以在单调递增,所以,所以,即,令,,当时,,所以在上单调递减,由,,所以,所以,综上所述,.故选:A3、B【解析】自行车前后轮与撑脚分别接触地面,使得自行车稳定,此时自行车与地面的三个接触点不在同一条线上.【详解】自行车前后轮与撑脚分别接触地面,此时三个接触点不在同一条线上,所以可以确定一个平面,即地面,从而使得自行车稳定.故选B项.【点睛】本题考查不共线的三个点确定一个平面,属于简单题.4、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.5、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B6、B【解析】根据焦点在x轴上的双曲线渐近线斜率为±可求a,b关系,再结合a,b,c关系即可求解﹒【详解】∵双曲线1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴双曲线的方程为故选:B7、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A8、B【解析】根据充分条件和必要条件的概念即可判断.【详解】∵,∴“”是“”的必要不充分条件.故选:B.9、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B10、B【解析】求出抛物线的焦点坐标,可得出的值,进而可求得椭圆的离心率.【详解】抛物线的焦点坐标为,由已知可得,可得,因此,该椭圆的离心率为.故选:B.11、D【解析】由题意可证平面,取BD的中点F,连接EF,则为直线与所成的角,利用余弦定理求出,根据三棱锥体积公式即可求得体积【详解】如图,∵,点为的中点,∴,,∵,,两两垂直,,∴平面,取BD的中点F,连接EF,∴为直线与所成的角,且,由题意可知,,设,连接AF,则,在中,由余弦定理,得,即,解得,即∴三棱锥的体积故选:12、D【解析】根据椭圆方程可得到a,从而求得长轴长.【详解】椭圆方程为,故,所以椭圆长轴长为,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设双曲线的方程为,将点代入方程可求的值,从而可得结果【详解】设与双曲线有共同的渐近线的双曲线的方程为,该双曲线经过点,所求的双曲线方程为:,整理得故答案为【点睛】本题考查双曲线的方程与简单性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.与共渐近线的双曲线方程可设为,只需根据已知条件求出即可.14、【解析】设出点,,,的坐标,表示出直线,的斜率,作和后利用基本不等式求最值,利用离心率求得与的关系,则答案可求详解】解:设,,,,,,,,,,,当且仅当,即时等号成立,是椭圆长轴的两个端点,,是椭圆上关于轴对称的两点,,,即,的最小值为,椭圆的离心率为,,即,得,的最小值为故答案为:15、【解析】首先求得点A关于x轴的对称点,然后数形结合结合直线方程求解点P的坐标即可.【详解】点A(1,3)关于x轴的对称点为A′(1,-3),如图所示,连接A′B并延长交x轴于点P,即为所求直线A′B的方程是y+3=(x-1),即.令y=0,得x=13则点P的坐标是.【点睛】本题主要考查直线方程的应用,最值问题的求解,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.16、【解析】依题意,设所求的双曲线的方程为.点为该双曲线上的点,.该双曲线的方程为:,即.故本题正确答案是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①;②证明见解析,(2)最少为6.56吨【解析】(1)①根据题意直接写出一个递推公式即可;②要证明是等比数列,只要证明为一个常数即可,求出等比数列的通项公式,即可求出的通项公式;(2)记为数列的前n项和,根据题意求出,利用分组求和法求出数列的前n项和,再令,解之即可得出答案.【小问1详解】解:①依题意得,则,②因为,所以,所以,因为所以数列是等比数列,首项是,公比是1.02,所以,所以;【小问2详解】解:记为数列的前n项和,,依题,所以,所以m最少为6.56吨18、(1);(2)1【解析】(1)将问题转化为在内恒成立,求出的最小值,即可得到答案;(2)对函数求导得,由,即可得到答案;【详解】(1)依题意知,在内恒成立,所以在内恒成立,所以,因为的最小值为1,所以,所以实数m的取值范围是.(2),依题意有,即,,解得.19、(1)(2)证明见解析【解析】(1)当时,,求出,可得答案;(2)设,,,,,设,求出利用单调性可得答案.【小问1详解】当时,,则,所以单调递增,又,当时,,单调递减,当时,,单调递增,所以.【小问2详解】设,若,则,若,则,设,则,所以单调递增,又,当时,,上单调递减,当时,,单调递增,所以,所以,综上,恒成立.【点睛】本题考查了求函数值域或最值的问题,一般都需要通过导数研究函数的单调性、极值、最值来处理,特别的要根据所求问题,适时构造恰当的函数,再利用所构造函数的单调性、最值解决问题是常用方法,考查了学生分析问题、解决问题的能力.20、(1)(2)【解析】(1)由对数函数性质,转化为对任意的恒成立,结合二次函数的性质,即可求解;(2)利用基本不等式,求得当命题是真命题,得到,结合“”为真命题,“”为假命题,分类讨论,即可求解.【小问1详解】解:因为是真命题,所以对任意的恒成立,当时,不等式,显然在不能恒成立;当时,则满足解得,故实数的取值范围为【小问2详解】解:因为,所以,当且仅当时,等号成立若是真命题,则;因为“”为真命题,“”为假命题,所以与一真一假当真假时,所以;当假真时,所以,综上,实数的取值范围为21、(1),(2)2【解析】(1)消参数即可得曲线的普通方程,利用极坐标方程与直角坐标方程之间的转化关系式,从而曲线的直角坐标方程;(2)将的参数方程代入的直角坐标方程,得关于的一元二次方程,由韦达定理得,即可得的值.【小问1详解】由,消去参数,得,即,所以曲线的普通方程为.由,得,即,所以曲线的直角坐标方程为【小问2详解】将代入,整理得,则,令方程的两个根为由韦达定理得,所以.22、(1)证明见解析;(2).【解析】(1)在平面中构造与平行的直线,利用线线平行推证线面平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级上册20以内的所有加减法计算题
- 广东省中山市2024年中考一模数学试卷含答案
- 荆州学院《非线性系统理论与设计》2023-2024学年第一学期期末试卷
- 辽宁城市建设职业技术学院《互换性与技术测量D》2023-2024学年第一学期期末试卷
- 黄冈职业技术学院《材料科学基础B(二)》2023-2024学年第一学期期末试卷
- 【物理】第九章压强 固体压强 练习 2024-2025学年人教版物理八年级下学期
- 黑龙江冰雪体育职业学院《兽医寄生虫病学》2023-2024学年第一学期期末试卷
- 重庆三峡职业学院《标志与符号设计》2023-2024学年第一学期期末试卷
- 重庆城市管理职业学院《粉体科学与工程实验》2023-2024学年第一学期期末试卷
- 浙江育英职业技术学院《卫生微生物学》2023-2024学年第一学期期末试卷
- 第10章 时间敏感网络TSN
- 三晶8000B系列变频器说明书
- 幽默动感年会互动PPT演示模板
- 麒麟小学创建五好关工委工作实施方案
- 地化录井技术在油田勘探开发中的应用-李斌
- GB/T 23315-2009粘扣带
- GB/T 10228-2015干式电力变压器技术参数和要求
- 2休闲食品市场营销策划案1
- 全国高校第三轮学科评估按大学汇总
- 社区卫生服务中心装饰施工组织设计(86页)
- 送达地址确认书(法院最新版)
评论
0/150
提交评论