上海市长征中学2025届数学高一上期末调研模拟试题含解析_第1页
上海市长征中学2025届数学高一上期末调研模拟试题含解析_第2页
上海市长征中学2025届数学高一上期末调研模拟试题含解析_第3页
上海市长征中学2025届数学高一上期末调研模拟试题含解析_第4页
上海市长征中学2025届数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市长征中学2025届数学高一上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.82.下列关于函数的图象中,可以直观判断方程在上有解的是A. B.C. D.3.已知集合,则()A. B.C. D.4.设集合,3,,则正确的是A.3, B.3,C. D.5.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.若,则有()A.最大值 B.最小值C.最大值2 D.最小值27.已知点在圆外,则直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定8.下列函数中,在上单调递增的是()A. B.C. D.9.设,,,则、、的大小关系是()A. B.C. D.10.已知是锐角三角形,,,则A. B.C. D.与的大小不能确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是________.12.设函数,则____________.13.若不等式的解集为,则不等式的解集为______.14.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.15.已知是定义在R上的周期为2的奇函数,当时,,则___________.16.已知函数若关于的方程有5个不同的实数根,则的取值范围为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积.18.已知函数,图象上相邻的最高点与最低点的横坐标相差,______;(1)①的一条对称轴且;②的一个对称中心,且在上单调递减;③向左平移个单位得到的图象关于轴对称且从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(2)在(1)的情况下,令,,若存在使得成立,求实数的取值范围.19.已知函数为幂函数,且为奇函数.(1)求的值,并确定的解析式;(2)令,求在的值域.20.已知函数是定义在上的奇函数,且.(1)确定函数的解析式,判断并证明函数在上的单调性;(2)若存在实数,使得不等式成立,求正实数的取值范围.21.如图,已知平面,四边形为矩形,四边形为直角梯形,,,,.(1)求证:平面;(2)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题2、D【解析】方程f(x)-2=0在(-∞,0)上有解,∴函数y=f(x)与y=2在(-∞,0)上有交点,分别观察直线y=2与函数f(x)的图象在(-∞,0)上交点的情况,选项A,B,C无交点,D有交点,故选D点睛:这个题目考查了方程有解的问题,把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,要求图像的画法要准确3、C【解析】根据并集的定义计算【详解】由题意故选:C4、D【解析】根据集合的定义与运算法则,对选项中的结论判断正误即可【详解】解:集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确故选D【点睛】本题考查了集合的定义与运算问题,属于基础题5、A【解析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果【详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件故选A【点睛】充分、必要条件的三种判断方法

定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件

等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法

集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件6、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.7、B【解析】由题意结合点与圆的位置关系考查圆心到直线的距离与圆的半径的大小关系即可确定直线与圆的位置关系.【详解】点在圆外,,圆心到直线距离,直线与圆相交.故选B.【点睛】本题主要考查点与圆的位置关系,直线与圆的位置关系等知识,意在考查学生的转化能力和计算求解能力.8、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、、在上均为减函数,函数在上为增函数.故选:B.9、B【解析】利用指数函数、对数函数的单调性比较、、三个数与、的大小关系,由此可得出、、的大小关系.【详解】,即,,,因此,.故选:B.10、A【解析】分析:利用作差法,根据“拆角”技巧,由三角函数的性质可得.详解:将,代入,,可得,,由于是锐角三角形,所以,,,,所以,,综上,知.故选A点睛:本题主要考查三角函数的性质,两角和与差的三角函数以及作差法比较大小,意在考查学生灵活运用所学知识解答问题的能力,属于中档题.解答本题的关键是运用好“拆角”技巧.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:,则这个球的表面积是:故答案为:【点睛】本题考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力12、【解析】依据分段函数定义去求的值即可.【详解】由,可得,则由,可得故答案为:13、【解析】由三个二次的关系求,根据分式不等式的解法求不等式的解集.【详解】∵不等式的解集为∴,是方程的两根,∴,∴可化为∴∴不等式的解集为,故答案为:.14、【解析】求出扇形的半径后,利用扇形的面积公式可求得结果.【详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:15、##【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以.故答案为:.16、【解析】根据函数的解析式作出函数的大致图像,再将整理变形,然后将方程的根的问题转化为函数图象的交点问题解决.【详解】由题意得,即或,的图象如图所示,关于的方程有5个不同的实数根,则或,解得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当面积相等的小矩形的长为时,矩形面积最大,【解析】设每个小矩形的长为,宽为,依题意可知,代入矩形的面积公式,根据基本不等式即可求得矩形面积的最大值.【详解】设每个小矩形的长为,宽为,依题意可知,,当且仅当取等号,所以时,.【点睛】本题主要考查函数最值的应用,考查了学生分析问题和解决问题的能力.18、(1)选①②③,;(2).【解析】(1)根据题意可得出函数的最小正周期,可求得的值,根据所选的条件得出关于的表达式,然后结合所选条件进行检验,求出的值,综合可得出函数的解析式;(2)求得,由可计算得出,进而可得出,由参变量分离法得出,利用基本不等式求得的最小值,由此可得出实数的取值范围.【详解】(1)由题意可知,函数的最小正周期为,.选①,因为函数的一条对称轴,则,解得,,所以,的可能取值为、.若,则,则,不合乎题意;若,则,则,合乎题意.所以,;选②,因为函数的一个对称中心,则,解得,,所以,的可能取值为、.若,则,当时,,此时,函数在区间上单调递增,不合乎题意;若,则,当时,,此时,函数在区间上单调递减,合乎题意;所以,;选③,将函数向左平移个单位得到的图象关于轴对称,所得函数为,由于函数的图象关于轴对称,可得,解得,,所以,的可能取值为、.若,则,,不合乎题意;若,则,,合乎题意.所以,;(2)由(1)可知,所以,,当时,,,所以,,所以,,,,,则,由可得,所以,,由基本不等式可得,当且仅当时,等号成立,所以,.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1),;(2),;(3),;(4),.19、(1),;(2).【解析】(1)根据幂函数的定义及函数奇偶性的定义即可求解;(2)由(1),得,利用换元法得到,,再根据二次函数的性质即可求解.【小问1详解】因为函数为幂函数,所以,解得或,当时,函数是奇函数,符合题意,当时,函数是偶函数,不符合题意,综上所述,的值为,函数的解析式为.【小问2详解】由(1)知,,所以,令,则,,所以,,根据二次函数的性质知,的对称轴为,开口向上,所以在上单调递增;所以,所以函数在的值域为.20、(1),函数在上单调递减,证明见解析.(2)【解析】(1)根据,得到函数解析式,设,计算,证明函数的单调性.(2)根据函数的奇偶性和单调性得到,设,求函数的最小值得到答案.【小问1详解】函数是定义在上的奇函数,则,,解得,,故.在上单调递减,证明如下:设,则,,,,故,即.故函数在上单调递减.【小问2详解】,即,,,故,即,设,,,,故,又,故.21、(1)证明见解析;(2).【解析】(1)先证明AC⊥BE,再取的中点,连接,经计算,利用勾股定理逆定理得到AC⊥BC,然后利用线面垂直的判定定理证得结论;(2)利用线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论