版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
酒泉市重点中学2025届高一数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,且,则()A. B.C. D.2.已知集合,,则A. B.C. D.3.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.4.下列关于函数,的单调性叙述正确的是()A.在上单调递增,在上单调递减B.在上单调递增,在上单调递减C.在及上单调递增,在上单调递减D.在上单调递增,在及上单调递减5.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是()A. B.C. D.6.半径为2的扇形OAB中,已知弦AB的长为2,则的长为A. B.C. D.7.已知向量,,则与的夹角为A. B.C. D.8.若角600°的终边上有一点(-4,a),则a的值是A. B.C. D.9.若α=-2,则α的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知函数,则在上的最大值与最小值之和为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,点P是圆上任意一点,则面积的最大值是______.12.已知点,直线与线段相交,则实数的取值范围是____;13.两条直线与互相垂直,则______14.给出下列四个结论:①函数是奇函数;②将函数的图象向右平移个单位长度,可以得到函数的图象;③若是第一象限角且,则;④已知函数,其中是正整数.若对任意实数都有,则的最小值是4其中所有正确结论的序号是________15.已知函数的图象如图,则________16.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.圆内有一点,为过点且倾斜角为的弦.(1)当时,求的长;(2)当弦被点平分时,写出直线的方程.18.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.19.计算求值:(1)计算:;(2).20.冰雪装备器材产业是冰雪产业重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?21.已知函数(且),在上的最大值为.(1)求的值;(2)当函数在定义域内是增函数时,令,判断函数的奇偶性,并证明,并求出的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据同角三角函数的基本关系,两角和的正弦公式,即可得到答案;详解】,,,,故选:D2、C【解析】先写出A的补集,再根据交集运算求解即可.【详解】因为,所以,故选C.【点睛】本题主要考查了集合的补集,交集运算,属于容易题.3、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可4、C【解析】先求出函数的一般性单调区间,再结合选项判断即可.【详解】的单调增区间满足:,即,所以其单调增区间为:,同理可得其单调减区间为:.由于,令中的,有,,所以在上的增区间为及.令中的,有,所以在上的减区间为.故选:C5、C【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可.【详解】因为函数是单调递增函数,所以即有两个相异非负实根,所以有两个相异非负实根,令,所以有两个相异非负实根,令则,解得.故选.【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题.6、C【解析】由已知可求圆心角的大小,根据弧长公式即可计算得解【详解】设扇形的弧长为l,圆心角大小为,∵半径为2的扇形OAB中,弦AB的长为2,∴,∴故选C【点睛】本题主要考查了弧长公式的应用,考查了数形结合思想的应用,属于基础题7、C【解析】利用夹角公式进行计算【详解】由条件可知,,,所以,故与的夹角为故选【点睛】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题8、C【解析】∵角的终边上有一点,根据三角函数的定义可得,即,故选C.9、C【解析】根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1rad≈57.30°,所以-2rad≈-114.60°,故α的终边在第三象限故选:C.10、D【解析】首先利用两角和与差的正弦公式将函数化简为,当时,,由正弦型函数的单调性即可求出最值.【详解】当时,,所以最大值与最小值之和为:.故选:D【点睛】本题考查两角和与差的正弦公式,正弦型函数的单调性与最值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由点可得直线AB的方程及的值,可得圆心到直线AB的距离d及P到直线AB的最大距离,可得面积的最大值是.【详解】解:直线AB的方程为,圆心到直线AB的距离,点P到直线AB的最大距离为.故面积的最大值是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式及两点间距离公式等,需综合运用所学知识求解.12、【解析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力13、【解析】先分别求出两条直线的斜率,再利用两条直线垂直的充要条件是斜率乘积等于,即可求出结果【详解】直线的斜率,直线的斜率,且两直线与互相垂直,,,解得,故答案为【点睛】本题主要考查两直线垂直的充要条件,属于基础题.在两条直线的斜率都存在的条件下,两条直线垂直的充要条件是斜率乘积等于14、①②④【解析】直接利用奇函数的定义,函数图象的平移变换,象限角,三角函数的恒等变换以及余弦函数图像的性质即可判断.【详解】对于①,其中,即为奇函数,则①正确;对于②将的图象向右平移个单位长度,即,则②正确;对于③若令,,则,则③不正确;对于④,由题意可知,任意一个长为的开区间上至少包含函数的一个周期,的周期为,则,即,则的最小值是4,则④正确;故答案为:①②④.15、8【解析】由图像可得:过点和,代入解得a、b【详解】由图像可得:过点和,则有:,解得∴故答案为:816、##-0.5【解析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【详解】由题设,,,令,可得,即,,所以,,则.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出直线AB的斜率即可写出其点斜式方程,利用勾股定理可求得弦长;(2)当弦被点平分时,AB与垂直,由此可求出直线AB的斜率,写出其点斜式方程化简即可.【详解】(1)依题意,直线AB的斜率为,又直线AB过点,所以直线AB的方程为:,圆心到直线AB的距离为,则,所以;(2)当弦被点平分时,AB与垂直,因为,所以,直线AB的点斜式方程为,即.【点睛】本题考查直线的点斜式方程、直线截圆所得弦长,属于基础题.18、(1)分别抽取人,人,人;(2)【解析】(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有种.其中第组的志愿者被抽中的有种,答:第组的志愿者有被抽中的概率为【点睛】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏.19、(1)102(2)【解析】根据指数幂运算律和对数运算律,计算即得解【小问1详解】【小问2详解】20、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度范例汇编【职工管理】十篇
- 《市场进入和效率》课件
- DBJ51-T 040-2021 四川省工程建设项目招标代理操作规程
- 超高层商住楼转换层施工方案#模板工程#钢筋工程#混凝土工程
- 《小数点移动》课件2
- 《宝马销售流程》课件
- 《电动力学chapter》课件
- 印刷包装行业市场营销经验分享
- 电脑设备销售员工作总结
- 玩具模型销售工作总结
- 运动神经元病小讲课
- 工会的财务管理制度〔13篇〕
- 新版医务人员法律法规知识培训课件
- 2024年土地市场研究分析服务协议
- 物业管理公文写作培训
- 2023医疗质量安全核心制度要点释义(第二版)对比版
- 家庭教育大讲堂实施方案
- 部编版《道德与法治》四年级下册教材解读与分析文档
- 2024-2030年中国机场跑道异物碎片(FOD)检测系统行业市场发展趋势与前景展望战略研究报告
- 学校体育学智慧树知到答案2024年湖南科技大学
- 英语完形填空练习题20篇
评论
0/150
提交评论