山东省曹县三桐中学年2025届数学高一上期末监测模拟试题含解析_第1页
山东省曹县三桐中学年2025届数学高一上期末监测模拟试题含解析_第2页
山东省曹县三桐中学年2025届数学高一上期末监测模拟试题含解析_第3页
山东省曹县三桐中学年2025届数学高一上期末监测模拟试题含解析_第4页
山东省曹县三桐中学年2025届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省曹县三桐中学年2025届数学高一上期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最大值是()A. B.1C. D.22.函数的减区间为()A. B.C. D.3.“x=1”是“x2-4x+3=0”的A.充分不必要条件B必要不充分条件C.充要条件D.既不充分也不必要条件4.已知,则os等于()A. B.C. D.5.如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角()A.90° B.60°C.45° D.30°6.函数的最大值为()A. B.C. D.7.已知函数f(x)=,若f(f(-1))=6,则实数a的值为()A.1 B.C.2 D.48.在下列函数中,最小值为2的是()A.(且) B.C. D.9.下列关于函数的图象中,可以直观判断方程在上有解的是A. B.C. D.10.不等式的解集是()A.或 B.或C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知若,则().12.点关于直线的对称点的坐标为______.13.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方式如下表:每户每月用水量水价不超过12m的部分3元/m超过12m但不超过18m的部分6元/m超过18m的部分9元/m若某户居民本月交纳水费为66元,则此户居民本月用水量为____________.14.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______15.已知f(x)是定义在R上的偶函数,且在区间(−∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是16.已知,且,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在底面是正方形的四棱锥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(1)求证:;(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由;(3)当二面角的大小为时,求PC与底面ABCD所成角的正切值.18.已知函数为偶函数.(1)求的值;(2)求的最小值;(3)若对恒成立,求实数的取值范围.19.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.20.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.(1),;(2),.21.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用正余弦的差角公式展开化简即可求最值.【详解】,∵,∴函数的最大值是.故选:C.2、D【解析】先气的函数的定义域为,结合二次函数性质和复合函数的单调性的判定方法,即可求解.【详解】由题意,函数有意义,则满足,即,解得,即函数的定义域为,令,可得其开口向下,对称轴的方程为,所以函数在区间单调递增,在区间上单调递减,根据复合函数的单调性,可得函数在上单调递减,即的减区间为.故选:D.3、A【解析】将代入可判断充分性,求解方程可判断必要性,即可得到结果.【详解】将代入中可得,即“”是“”的充分条件;由可得,即或,所以“”不是“”的必要条件,故选:A.【点睛】本题考查充分条件和必要条件的判定,属于基础题.4、A【解析】利用诱导公式即可得到结果.【详解】∵∴os故选A【点睛】本题考查诱导公式的应用,属于基础题.5、B【解析】将原图还原到正方体中,连接SC,AS,可确定(或其补角)是PB与AC所成的角.【详解】因为ABCD为正方形,PA⊥平面ABCD,PA=AB,可将原图还原到正方体中,连接SC,AS,则PB平行于SC,如图所示.∴(或其补角)是PB与AC所成的角,∵为正三角形,∴,∴PB与AC所成角为.故选:B.6、C【解析】先利用辅助角公式化简,再由正弦函数的性质即可求解.【详解】,所以当时,取得最大值,故选:C7、A【解析】利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可【详解】函数f(x)=,若f(f(-1))=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1故选A【点睛】本题考查分段函数应用,函数值的求法,考查计算能力8、C【解析】根据基本不等式的使用条件,对四个选项分别进行判断,得到答案.【详解】选项A,当时,,所以最小值为不正确;选项B,因为,所以,所以,当且仅当,即时等号成立,而,所以等号不成立,所以不正确;选项C,因为,所以,当且仅当,即时,等号成立,所以正确;选项D,因为,所以,所以,当且仅当,即时,等号成立,而,所以不正确.故选:C.【点睛】本题考查基本不等式求和的最小值,基本不等式的使用条件,属于简单题.9、D【解析】方程f(x)-2=0在(-∞,0)上有解,∴函数y=f(x)与y=2在(-∞,0)上有交点,分别观察直线y=2与函数f(x)的图象在(-∞,0)上交点的情况,选项A,B,C无交点,D有交点,故选D点睛:这个题目考查了方程有解的问题,把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,要求图像的画法要准确10、A【解析】把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,利用二次不等式的解法可求得结果【详解】由,得,解得或所以原不等式的解集为或故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用平面向量平行的坐标表示进行求解.【详解】因为,所以,即;故答案:.【点睛】本题主要考查平面向量平行的坐标表示,两向量平行坐标分量对应成比例,侧重考查数学运算的核心素养.12、【解析】设点关于直线的对称点为,由垂直的斜率关系,和线段的中点在直线上列出方程组即可求解.【详解】设点关于直线的对称点为,由对称性知,直线与线段垂直,所以,所以,又线段的中点在直线上,即,所以,由,所以点关于直线的对称点的坐标为:.故答案为:.13、【解析】根据阶梯水价,结合题意进行求解即可.【详解】解:当用水量为时,水费为,而本月交纳的水费为66元,显然用水量超过,当用水量为时,水费为,而本月交纳的水费为66元,所以本月用水量不超过,即有,因此本月用水量为,故答案为:14、【解析】根据余弦函数的定义可得答案.【详解】解:∵是角终边上的一点,∴故答案为:.15、(【解析】由题意f(x)在(0,+∞)上单调递减,又f(x)是偶函数,则不等式f(2a-1)>f(-2)可化为f(216、##【解析】由,应用诱导公式,结合已知角的范围及正弦值求,即可得解.【详解】由题设,,又,即,且,所以,故.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)GEC中点(3)【解析】试题分析:(1)要证:BD⊥FG,先证BD⊥平面PAC即可;(2)确定点G在线段AC上的位置,使FG∥平面PBD,FG∥平面PBD内的一条直线即可;(3)利用向量数量积求解法向量,然后转化求出PC与底面ABCD所成角的正切值解析:(1)(2)当GEC中点,即时,FG//平面PBD理由如下:连接PE,F为PC中点,G为EC中点,FG//PEFG//平面PBD(3)作作于H,连接DH,,四边形ABCD是正方形,又是二面角的平面角,即是PC与底面ABCD所成角连接EH,则又,PC与与底面ABCD所成角的正切值是.点睛:这个题目考查了空间中的直线和平面的位置关系.证明线线垂直,可以从线面垂直入手,也可以平移到同一平面中利用平面几何知识证明;求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;在高二的课本上讲到还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可18、(1)(2)(3)【解析】(1)运用偶函数的定义和对数的运算性质,结合恒等式的性质可得所求值;(2)运用对数运算性质及均值不等式即可得到结果;(3)先证明函数单调性,化抽象不等式为具体不等式,转求函数的最值即可.【小问1详解】因为为偶函数,所以,所以,所以,所以.【小问2详解】因为,所以(当且仅当时等号成立),所以最小值为.【小问3详解】,任取且,所以,因为且,所以,所以,所以,所以,所以在上为增函数,又因为为偶函数,所以,当时,,当时,,所以,设(当且仅当时,等号成立),因为,所以等号能成立,所以,所以,所以,综上,.19、(1)2;(2)见解析【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由,可知:∴,,,∴,即.∴函数在上是增函数.点晴:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.20、(1)有最大值、最小值.见解析(2)有最大值、最小值.见解析【解析】(1)函数有最大最小值,使函数,取得最大值最小值的x的集合,就是使函数,取得最大值最小值的x的集合;(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合,使函数,取得最小值的x的集合,就是使,取得最大值的z的集合.【详解】解:容易知道,这两个函数都有最大值、最小值.(1)使函数,取得最大值的x的集合,就是使函数,取得最大值的x的集合;使函数,取得最小值的x的集合,就是使函数,取得最小值的x的集合.函数,的最大值是;最小值是.(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合.由,得.所以,使函数,取得最大值3的x的集合是.同理,使函数,取得最小值-3的x的集合是.函数,的最大值是3,最小值是-3.【点睛】本题主要考查三角函数的最值的求法,意在考查学生对这些知识的理解掌握水平.21、(1)A=2,8,(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论