版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市界首市2025届高二数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.2.抛物线的准线方程为,则实数的值为()A. B.C. D.3.从编号分别为,,,,的五个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为()A. B.C. D.4.已知,,,则的大小关系是()A. B.C. D.5.已知函数的导数为,则等于()A.0 B.1C.2 D.46.等比数列中,,,则()A. B.C. D.7.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限8.圆C:的圆心坐标和半径分别为()A.和4 B.(-3,2)和4C.和 D.和9.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=()A.1 B.2C. D.410.化学中,将构成粒子(原子、离子或分子)在空间按一定规律呈周期性重复排列构成的固体物质称为晶体.在结构化学中,可将晶体结构截分为一个个包含等同内容的基本单位,这个基本单位叫做晶胞.已知钙、钛、氧可以形成如图所示的立方体晶胞(其中Ti原子位于晶胞的中心,Ca原子均在顶点位置,O原子位于棱的中点).则图中原子连线BF与所成角的余弦值为()A. B.C. D.11.在长方体中,若,,则异而直线与所成角的余弦值为()A. B.C. D.12.已知点是双曲线的左焦点,定点,是双曲线右支上动点,则的最小值为().A.7 B.8C.9 D.10二、填空题:本题共4小题,每小题5分,共20分。13.椭圆方程为椭圆内有一点,以这一点为中点的弦所在的直线方程为,则椭圆的离心率为______14.定义在上的函数满足:有成立且,则不等式的解集为__________15.若直线与圆有公共点,则b的取值范围是_____16.直线的倾斜角为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若在单调递增,求的取值范围;(2)若,求证:.18.(12分)为让“双减”工作落实到位,某中学积极响应上级号召,全面推进中小学生课后延时服务,推行课后服务“”模式,开展了内容丰富、形式多样、有利于学生身心成长的活动.该中学初一共有700名学生其中男生400名、女生300名.为让课后服务更受欢迎,该校准备推行体育类与艺术类两大类活动于2021年9月在初一学生中进行了问卷调查.(1)调查结果显示:有的男学生和的女学生愿意参加体育类活动,其他男学生与女学生都不愿意参加体育类活动,请完成下边列联表.并判断是否有的把握认为愿意参加体育类活动与学生的性别相关?愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生女学生合计(2)在开展了两个月活动课后,为了了解学生的活动课情况,在初一年级学生中按男女比例分层抽取7名学生调查情况,并从这7名学生中随机选择3名学生进行展示,用X表示选出进行展示的3名学生中女学生的人数,求随机变量X的分布列和数学期望.0.1000.0500.0250.0102.7063.8415.0246.635参考公式:,其中.19.(12分)已知数列为等差数列,为其前n项和,若,(1)求数列的首项和公差;(2)求的最小值.20.(12分)已知圆C:(1)若过点的直线l与圆C相交所得的弦长为,求直线l的方程;(2)若P是直线:上的动点,PA,PB是圆C的两条切线,A,B是切点,求四边形PACB面积的最小值21.(12分)已知椭圆与双曲线有相同的焦点,且的短轴长为(1)求的方程;(2)若直线与交于P,Q两点,,且的面积为,求k22.(10分)已知函数.(1)若函数的图象在处的切线方程为,求的值;(2)若函数在上是增函数,求实数的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B2、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B3、C【解析】利用古典概型计算公式计算即可【详解】从编号分别为,,,,的五个大小完全相同的小球中,随机取出三个小球共有种不同的取法,恰好有两个小球编号相邻的有:,共有6种所以概率为故选:C4、B【解析】利用微积分基本定理计算,利用积分的几何意义求扇形面积得到,然后比较大小.【详解】,表示以原点为圆心,半径为2的圆在第二象限的部分的面积,∴;,∵e=2.71828…>2.7,,,,故选:5、A【解析】先对函数求导,然后代值计算即可【详解】因为,所以.故选:A6、D【解析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【详解】解:设公比为,因为,,所以,即,解得,所以;故选:D7、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.8、C【解析】先将方程化为一般形式,再根据公式计算求解即可.【详解】解:可化为,由圆心为,半径,易知圆心的坐标为,半径为故选:C9、B【解析】根据抛物线定义,转化,要使有最小值,只需最大,即直线与抛物线相切,联立直线方程与抛物线方程,求出斜率,然后求出点坐标,即可求解.【详解】由题知,抛物线的准线方程为,,过P作垂直于准线于,连接,由抛物线定义知.由正弦函数知,要使最小值,即最小,即最大,即直线斜率最大,即直线与抛物线相切.设所在的直线方程为:,联立抛物线方程:,整理得:则,解得即,解得,代入得或,再利用焦半径公式得故选:B.关键点睛:本题考查抛物线的性质,直线与抛物线的位置关系,解题的关键是要将取最小值转化为直线斜率最大,再转化为抛物线的切线,考查学生的转化思想与运算求解能力,属于中档题.10、C【解析】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,求出的值,即可得到答案;【详解】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,则,,,,连线与所成角的余弦值为故选:C.11、C【解析】通过平移把异面直线平移到同一平面中,所以取,的中点,易知且过中心点,所以异而直线与所成角为和所成角,通过解三角形即可得解.【详解】根据长方体的对称性可得体对角线过中心点,取,的中点,易知且过中心点,所以异而直线和所成角为和所成角,连接,在中,,,,所以则异而直线与所成角的余弦值为:,故选:C.12、C【解析】设双曲线的右焦点为M,作出图形,根据双曲线的定义可得,可得出,利用A、P、M三点共线时取得最小值即可得解.【详解】∵是双曲线的左焦点,∴,,,,设双曲线的右焦点为M,则,由双曲线的定义可得,则,所以,当且仅当A、P、M三点共线时,等号成立,因此,的最小值为9.故选:C.【点睛】关键点点睛:利用双曲线的定义求解线段和的最小值,有如下方法:(1)求解椭圆、双曲线有关的线段长度和、差的最值,都可以通过相应的圆锥曲线的定义分析问题;(2)圆外一点到圆上的点的距离的最值,可通过连接圆外的点与圆心来分析求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,利用“点差法”得到,即可求出离心率.【详解】设直线与椭圆交于,则.因为AB中点,则.又,相减得:.所以所以所以,所以,即离心率.故答案为:.14、【解析】由,判断出函数的单调性,利用单调性解即可【详解】设,又有成立,函数,即是上的增函数,,即,,故答案为:15、【解析】直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数取值范围是.故答案为:16、【解析】由直线的斜率为,得到,即可求解.【详解】由题意,可知直线的斜率为,设直线的倾斜角为,则,解得,即换线的倾斜角为.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)由函数在上单调递增,则在上恒成立,由求解.(2)由(1)的结论,取,有,即在上恒成立,然后令,有求解.【详解】(1)因为函数在上单调递增,所以在上恒成立,则有在上恒成立,即.令函数,,所以时,,在上单调递增,所以,所以有,即,因此.(2)由(1)可知当时,为增函数,不妨取,则有在上单调递增,所以,即有在上恒成立,令,则有,所以,所以,因此.【点睛】方法点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到18、(1)详见解析;(2)详见解析.【解析】(1)根据初一男生数和女生数,结合有的男学生和的女学生,愿意参加体育类活动求解;计算的值,再与临界值表对照下结论;(2)根据这7名学生中男生有4名,女生有3名,随机选择3名由抽到女学生的人数X可能为0,1,2,3,分别求得其概率,列出分布列,再求期望.【小问1详解】解:因为初一共有700名学生其中男生400名、女生300名,且有的男学生和的女学生,所以愿意参加体育类活动的男生有300名,女生有200名,则列联表如下:愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生300100400女学生200100300合计500200700,所以有的把握认为愿意参加体育类活动与学生的性别相关;【小问2详解】这7名学生中男生有4名,女生有3名,随机选择3名学生进行展示,抽到女学生的人数X可能为0,1,2,3,所以,,所以随机变量X分布列如下:X0123p19、(1)首项为-2,公差为1;(2).【解析】(1)设出等差数列的公差,再结合前n项和公式列式计算作答.(2)由(1)的结论,探求数列的性质即可推理计算作答.【小问1详解】设等差数列首项为,公差为,而为其前n项和,,,于是得:,解得,,所以,.【小问2详解】由(1)知,,,,数列是递增数列,前3项均为非正数,从第4项起为正数,而,于是得的前2项和与前3项和相等并且最小,所以当或时,.20、(1)或.(2)8【解析】(1)先判断当斜率不存在时,不满足条件;再判断当斜率存在时,设利用垂径定理列方程求出k,即可求出直线方程;(2)过P作圆C的两条切线,切点分别为A、B,连结CA、CB,得到.判断出当时,最小,四边形PACB面积取得最小值.利用点到直线的距离公式求出,,即可求出四边形PACB面积的最小值.【小问1详解】圆C:化为标准方程为:,所以圆心为,半径为r=4.(1)当斜率不存在时,x=1代入圆方程得,弦长为,不满足条件;(2)当斜率存在时,设即.圆心C到直线l的距离,解得:或k=0,所以直线方程为或.【小问2详解】过P作圆C的两条切线,切点分别为A、B,连结CA、CB,则.因为,所以所以.所以当时,最小,四边形PACB面积取得最小值.所以,所以,即四边形PACB面积的最小值为8.21、(1)(2)或k=1.【解析】(1)根据题意求得双曲线的焦点即知椭圆焦点,结合椭圆短轴长,可求得椭圆标准方程;(2)将直线方程和椭圆方程联立,整理得,从而得到根与系数的关系式,然后求出弦长以及到直线PQ的距离,进而表示出,由题意得关于k的方程,解得答案.【小问1详解】双曲线即,故双曲线交点坐标为,由此可知椭圆焦点也为,又的短轴长为,故,所以,故椭圆的方程为;【小问2详解】联立,整理得:,其,设,则,所以=,点到直线PQ的距离为,所以=,又的面积为,则=,解得或k=1.22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 喉感觉麻痹的健康宣教
- 电力系统分析课件孟祥萍
- 黑素细胞痣的临床护理
- 小儿荨麻疹的临床护理
- 先天性耳廓畸形的健康宣教
- 哺乳期乳头皲裂的健康宣教
- 《单片机原理及应用 》课件-第4章
- 《第一章》课件-第五章技术体验 - 智能交互
- 皮肤良性肿瘤的临床护理
- 隆突性皮肤纤维肉瘤的临床护理
- 中小学校长公开招聘理论考试(试卷)
- 房屋建筑学课程设计报告
- 塑料制品厂安全生产事故综合应急预案
- 国家开放大学《水法规与行政执法》作业1-4参考答案
- 药品生产监督检查重点内容和检查方法指导原则
- 品质部-8D培训资料
- 山西省晋城市各县区乡镇行政村村庄村名居民村民委员会明细
- 中国石油集团公司井喷事故案例汇编
- 最全面浙美版六年级上册美术复习资料
- 中国低龄孤独症谱系障碍患儿家庭干预专家共识
- 医院特殊使用级抗菌药物使用管理流程
评论
0/150
提交评论