2025届山东省枣庄、滕州市数学高一上期末经典试题含解析_第1页
2025届山东省枣庄、滕州市数学高一上期末经典试题含解析_第2页
2025届山东省枣庄、滕州市数学高一上期末经典试题含解析_第3页
2025届山东省枣庄、滕州市数学高一上期末经典试题含解析_第4页
2025届山东省枣庄、滕州市数学高一上期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省枣庄、滕州市数学高一上期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,已知正方体中,异面直线与所成的角的大小是A.B.C.D.2.已知为角终边上一点,则()A. B.1C.2 D.33.已知函数若关于的方程有6个根,则的取值范围为()A. B.C. D.4.“”的一个充分不必要条件是()A. B.C. D.5.若函数是幂函数,且其图象过点,则函数的单调增区间为A. B.C. D.6.函数,的最小值是()A. B.C. D.7.的弧度数是()A. B.C. D.8.定义运算,则函数的部分图象大致是()A. B.C. D.9.设,则a,b,c大小关系为()A. B.C. D.10.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对二、填空题:本大题共6小题,每小题5分,共30分。11.已知是第四象限角,,则______12.写出一个能说明“若函数满足,则为奇函数”是假命题的函数:______13.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为_________14.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.15.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________16.扇形半径为,圆心角为60°,则扇形的弧长是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数定义在上且满足下列两个条件:①对任意都有;②当时,有,(1)求,并证明函数在上是奇函数;(2)验证函数是否满足这些条件;(3)若,试求函数的零点.18.如图,某地一天从6~14时的温度变化曲线近似满足函数(,).(1)求这一天6~14时的最大温差;(2)写出这段曲线的解析式;(3)预测当天12时的温度(,结果保留整数).19.已知函数(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集20.已知圆C经过点,两点,且圆心在直线上(1)求圆C的方程;(2)已知、是过点且互相垂直的两条直线,且与C交于A,B两点,与C交于P、Q两点,求四边形APBQ面积的最大值21.(1)试证明差角的余弦公式:;(2)利用公式推导:①和角的余弦公式,正弦公式,正切公式;②倍角公式,,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】在正方体中,利用线面垂直的判定定理,证得平面,由此能求出结果【详解】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是故选C本题主要考查了直线与平面垂直判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题2、B【解析】先根据三角函数的定义求出,再利用齐次化将弦化切进行求解.【详解】为角终边上一点,故,故.故选:B3、B【解析】作出函数的图象,令,则原方程可化为在上有2个不相等的实根,再数形结合得解.【详解】作出函数的图象如图所示.令,则可化为,要使关于的方程有6个根,数形结合知需方程在上有2个不相等的实根,,不妨设,,则解得,故的取值范围为,故选B【点睛】形如的函数的零点问题与函数图象结合较为紧密,处理问题的基础和关键是作出,的图象.若已知零点个数求参数的范围,通常的做法是令,先估计关于的方程的解的个数,再根据的图象特点,观察直线与图象的交点个数,进而确定参数的范围4、D【解析】利用充分条件,必要条件的定义判断即得.【详解】由,可得,所以是的充要条件;所以是既不充分也不必要条件;所以是的必要不充分条件;所以是的充分不必要条件.故选:D.5、B【解析】分别求出m,a的值,求出函数的单调区间即可【详解】解:由题意得:,解得:,故,将代入函数的解析式得:,解得:,故,令,解得:,故在递增,故选B【点睛】本题考查了幂函数的定义以及对数函数的性质,是一道基础题6、D【解析】利用基本不等式可求得的最小值.【详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.7、C【解析】弧度,弧度,则弧度弧度,故选C.8、B【解析】根据运算得到函数解析式作图判断.【详解】,其图象如图所示:故选:B9、C【解析】利用有理指数幂和幂函数的单调性分别求得,,的范围即可得答案【详解】,,,又在上单调递增,,,故选:C10、C【解析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【详解】因为是第四象限角,,则,所以,.故答案为:.12、(答案不唯一)【解析】根据余弦型函数的性质求解即可.【详解】解:因为,所以的周期为4,所以余弦型函数都满足,但不是奇函数故答案为:13、4【解析】设扇形半径为,弧长为,则,解得考点:角的概念,弧度的概念14、【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.15、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.16、【解析】根据弧长公式直接计算即可.【详解】解:扇形半径为,圆心角为60°,所以,圆心角对应弧度为.所以扇形的弧长为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3).【解析】令代入即可求得,令,则可得,即可证明结论根据函数的解析式求出定义域满足条件,再根据对数的运算性质,计算与并进行比较,根据对数函数的性质判断当时,的符号,即可得证用定义法先证明函数的单调性,然后转化函数的零点为,利用条件进行求解【详解】(1)对条件中的,令得.再令可得所以在(-1,1)是奇函数.(2)由可得,其定义域为(-1,1),当时,∴∴故函数是满足这些条件.(3)设,则,,由条件②知,从而有,即故上单调递减,由奇函数性质可知,在(0,1)上仍是单调减函数.原方程即为,在(-1,1)上单调又故原方程的解为.【点睛】本题考查的知识点是函数的奇偶性与函数的单调性,考查了对数函数的图象和性质,解题的关键是熟练掌握抽象函数的处理方式,将抽象问题具体化,有一定的难度和计算量18、(1)20℃;(2)();(3)27℃.【解析】(1)观察图象求出函数的最大、最小值即可计算作答;(2)根据给定图象求出解析式中相关参数,即可代入作答;(3)求出当时的y值作答.【小问1详解】观察图象得:6时的温度最低为10℃,14时的温度最高为30℃,所以这一天6~14时的最大温差为20℃.【小问2详解】观察图象,由解得:,周期,,即,则,而当时,,则,又,有,所以这段曲线的解析式为:,.小问3详解】由(2)知,当时,,预测当天12时的温度为27℃.19、(1);(2)奇函数;证明见解析;(3)【解析】(1)利用对数的性质可得,解不等式即可得函数的定义域.(2)根据奇偶性的定义证明的奇偶性即可.(3)由的解析式判断单调性,利用对数函数的单调性解不等式即可.【详解】(1)要使有意义,则,解得:∴的定义域为.(2)为奇函数,证明如下:由(1)知:且,∴为奇函数,得证(3)∵在内是增函数,由,∴,解得,∴不等式的解集是.20、(1)(2)7【解析】(1)根据题意,求出MN的中垂线的方程为,分析可得圆心为直线和的交点,联立直线的方程可得圆心的坐标,进而求出圆的半径,由圆的标准方程可得答案;(2)根据题意,分2种情况讨论:,当直线,,其中一条直线斜率为0时,另一条斜率不存在,分析可得四边形APBQ的面积;,当直线,斜率均存在时,设直线的斜率为k,则方程的方程为,用k表示四边形APBQ的面积,由二次函数分析其最值,综合即可得答案【小问1详解】根据题意,点,,则线段MN的中垂线方程为,圆心为直线和的交点,则有,解得,所以圆C的圆心坐标为;半径,所以圆C的方程为.【小问2详解】根据题意,已知、是互相垂直的两条直线,分2种情况讨论:,当直线,,其中一条直线斜率为0时.另一条斜率不存在不妨令的斜率为0,此时,四边形APBQ的面积,当直线,斜率均存在时,设直线的斜率为则其方程为,圆心到直线的距离为,于是,又的方程为同理,所以四边形APBQ的面积,当且仅当即时,等号成立因为综上所述,四边形APBQ面积的最大值为721、(1)证明见解析;(2)①答案见解析;②答案见解析【解析】在单位圆里面证明,然后根据诱导公式即可证明和,利用正弦余弦和正切的关系即可证明;用正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论