版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省浏阳市高一数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若实数满足,则实数的取值范围是()A. B.C. D.2.计算cos(-780°)的值是()A.- B.-C. D.3.已知函数,若函数在上有3个零点,则m的取值范围为()A. B.C. D.4.已知,并且是终边上一点,那么的值等于A. B.C. D.5.已知,则的值等于()A. B.C. D.6.在平面直角坐标系中,直线的斜率是()A. B.C. D.7.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)8.已知函数,若函数有3个零点,则实数m的取值范围()A. B.C.(0,1) D.9.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四10.设,则()A. B.aC. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则的最小值为__________.12.若两个正实数,满足,且不等式恒成立,则实数的取值范围是__________13.已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由14.已知幂函数(为常数)的图像经过点,则__________15.函数的值域是__________16.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=3-6,乙城市收益Q与投入a(单位:万元)满足Q=a+2,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当甲城市投资50万元时,求此时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?18.计算下列各式:(1)(式中字母均为正数);(2).19.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若的最大值与最小值之和为5,求的值.20.已知函数,,其中a为常数当时,设函数,判断函数在上是增函数还是减函数,并说明理由;设函数,若函数有且仅有一个零点,求实数a的取值范围21.已知,是夹角为的两个单位向量,且向量,求:,,;向量与夹角的余弦值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得.【详解】∵函数,定义域为,又,所以函数关于对称,当时,单调递增,故函数单调递增,∴函数在上单调递增,在上单调递减,由可得,,解得,且.故选:D.2、C【解析】直接利用诱导公式以及特殊角的三角函数求解即可【详解】cos(-780°)=cos780°=cos60°=故选C【点睛】本题考查余弦函数的应用,三角函数的化简求值,考查计算能力3、A【解析】画出函数图像,分解因式得到,有一个解故有两个解,根据图像得到答案.【详解】画出函数的图像,如图所示:当时,即,有一个解;则有两个解,根据图像知:故选:【点睛】本题考查了函数的零点问题,画出函数图像,分解因式是解题的关键.4、A【解析】由题意得:,选A.5、B【解析】由分段函数的定义计算【详解】,,所以故选:B6、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.7、A【解析】可以是一个正方体上面一个球,也可以是一个圆柱上面一个球8、C【解析】函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点,作出图象,即可求出实数的取值范围【详解】因为函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点作出函数图象,由图可知,实数的取值范围是故选:C.9、A【解析】根据判断、、的正负号,即可判断直线通过的象限【详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【点睛】本题考查直线,作为选择题10、C【解析】由求出的值,再由诱导公式可求出答案【详解】因为,所以,所以,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用已知条件凑出,再根据“”的巧用,最后利用基本不等式即可求解.【详解】由,得,即.因为所以,,则=,当且仅当即时,等号成立.所以当时,取得最小值为.故答案为:.12、【解析】根据题意,只要即可,再根据基本不等式中的“”的妙用,求得,解不等式即可得解.【详解】根据题意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案为:13、(1)(2)存在;(或)【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数,则函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意②当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.14、3【解析】设,依题意有,故.15、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.16、##,##【解析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)43.5(万元);(2)甲城市投资72万元,乙城市投资48万元.【解析】(1)直接代入收益公式进行计算即可.(2)由收益公式写出f(x)=-x+3+26,令t=,将函数转为关于t的二次函数求最值即可.【详解】(1)当x=50时,此时甲城市投资50万元,乙城市投资70万元,所以公司的总收益为3-6+×70+2=43.5(万元).(2)由题知,甲城市投资x万元,乙城市投资(120-x)万元,所以f(x)=3-6+(120-x)+2=-x+3+26,依题意得解得40≤x≤80.故f(x)=-x+3+26(40≤x≤80).令t=,则t∈[2,4],所以y=-t2+3t+26=-(t-6)2+44.当t=6,即x=72万元时,y的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.【点睛】本题考查函数模型的应用,考查函数最值的求解,属于基础题.18、(1);(2).【解析】(1)根据给定条件利用指数运算法则化简作答.(2)根据给定条件,利用对数换底公式及对数运算性质计算作答.【小问1详解】依题意,.【小问2详解】.19、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间的最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题20、(1)见解析;(2),【解析】代入a的值,求出的解析式,判断函数的单调性即可;由题意把函数有且仅有一个零点转化为有且只有1个实数根,通过讨论a的范围,结合二次函数的性质得到关于a的不等式组,解出即可【详解】(1)由题意,当时,,则,因为,又由在递减,所以递增,所以根据复合函数的单调性,可得函数在单调递增函数;由,得,即,若函数有且只有1个零点,则方程有且只有1个实数根,化简得,即有且只有1个实数根,时,可化为,即,此时,满足题意,当时,由得:,解得:或,当即时,方程有且只有1个实数根,此时,满足题意,当即时,若是的零点,则,解得:,若是的零点,则,解得:,函数有且只有1个零点,所以或,,综上,a的范围是,【点睛】本题主要考查了函数与方程的综合应用,其中解答中涉及到函数的单调性,函数的零点,以及二次函数的性质等知识点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届湖南省长沙市开福区第一中学高一数学第一学期期末考试模拟试题含解析
- 天津市军粮城第二中学2025届数学高一上期末监测试题含解析
- 2025届吉林省北大附属长春实验学校生物高一第一学期期末统考模拟试题含解析
- 甘肃省白银市会宁四中2025届数学高一上期末监测试题含解析
- 山东省青岛市崂山区第二中学2025届高一上数学期末预测试题含解析
- 2025届山东省枣庄、滕州市数学高一上期末经典试题含解析
- 江苏省盐城市时杨中学2025届英语高三第一学期期末综合测试试题含解析
- 坐井观天课件图片
- 2025届安徽省六安一中、舒城中学、霍邱一中数学高二上期末达标检测试题含解析
- 2025届甘肃省平凉市静宁一中高三数学第一学期期末调研模拟试题含解析
- 青春期发育期的心理发展概述课件
- 国际数棋活动教案
- 利尿实验(2010)课件
- 【知识点解析】双曲线‘第三定义’
- 头孢克肟胶囊课件
- 某品牌猪肉商业计划书
- 工程建设项目人盯人、人盯项目工作责任书
- 技能矩阵培训课件
- 检查井施工方案(实用资料)
- 2003年考研英语一真题及解析
- 宁德新能源考试题答案
评论
0/150
提交评论