![2025届福建省厦门科技中学数学高一上期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view9/M02/20/13/wKhkGWckaNOANvwGAAG4TMV1ksU431.jpg)
![2025届福建省厦门科技中学数学高一上期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view9/M02/20/13/wKhkGWckaNOANvwGAAG4TMV1ksU4312.jpg)
![2025届福建省厦门科技中学数学高一上期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view9/M02/20/13/wKhkGWckaNOANvwGAAG4TMV1ksU4313.jpg)
![2025届福建省厦门科技中学数学高一上期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view9/M02/20/13/wKhkGWckaNOANvwGAAG4TMV1ksU4314.jpg)
![2025届福建省厦门科技中学数学高一上期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view9/M02/20/13/wKhkGWckaNOANvwGAAG4TMV1ksU4315.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省厦门科技中学数学高一上期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数,又在区间上单调递增的是()A. B.C. D.2.若函数在上的最大值为4,则的取值范围为()A. B.C. D.3.已知函数是定义在上的奇函数,当时,,则当时,表达式是A. B.C. D.4.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数5.设函数(),,则方程在区间上的解的个数是A. B.C. D.6.函数的部分图像如图所示,则的最小正周期为()A. B.C. D.7.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1008.命题“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”9.下列函数中,在其定义域内既是增函数又是奇函数的是()A. B.C. D.10.若斜率为2的直线经过,,三点,则a,b的值是A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.若幂函数是偶函数,则___________.12.定义域为上的函数满足,且当时,,若,则a的取值范围是______13.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.14.若,记,,,则P、Q、R的大小关系为______15.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________16.设,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过三个点.(1)求圆的方程;(2)过原点的动直线与圆相交于不同的两点,求线段的中点的轨迹.18.在三棱锥中,和是边长为的等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.19.已知函数.(1)求的周期和单调区间;(2)若,,求的值.20.已知,其中为奇函数,为偶函数.(1)求与的解析式;(2)判断函数在其定义域上的单调性(不需证明);(3)若不等式恒成立,求实数的取值范围.21.在中,已知为线段的中点,顶点,的坐标分别为,.(Ⅰ)求线段的垂直平分线方程;(Ⅱ)若顶点的坐标为,求垂心的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意,依次判断选项中函数的奇偶性、单调性,从而得到正确选项.【详解】根据题意,依次判断选项:对于A,,是非奇非偶函数,不符合题意;对于B,,是余弦函数,是偶函数,在区间上不是单调函数,不符合题意;对于C,,是奇函数,不是偶函数,不符合题意;对于D,,是二次函数,其开口向下对称轴为y轴,既是偶函数又在上单调递增,故选:D.2、C【解析】先分别探究函数与的单调性,再求的最大值.【详解】因为在上单调递增,在上单调递增.而,,所以的取值范围为.【点睛】本题主要考查分段函数的最值以及指数函数,对数函数的单调性,属于中档题.3、D【解析】若,则,利用给出的解析式求出,再由奇函数的定义即,求出.【详解】设,则,当时,,,函数是定义在上的奇函数,,,故选D.【点睛】本题考查了函数奇偶性在求解析式的应用,属于中档题.本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为4、B【解析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.5、A【解析】由题意得,方程在区间上的解的个数即函数与函数的图像在区间上的交点个数在同一坐标系内画出两个函数图像,注意当时,恒成立,易得交点个数为.选A点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.但在应用图象解题时要注意两个函数图象在同一坐标系内的相对位置,要做到观察仔细,避免出错6、B【解析】由图可知,,计算即可.【详解】由图可知,,则,故选:B7、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.8、D【解析】根据特称命题的否定是全称命题,即可得出命题的否定形式【详解】因为特称命题的否定是全称命题,所以命题“,使”的否定形式为:,使故选:D9、D【解析】在定义域每个区间上为减函数,排除.是非奇非偶函数,排除.故选.10、C【解析】根据两点间斜率公式列方程解得结果.【详解】斜率为直线经过,,三点,∴,解得,.选C.【点睛】本题考查两点间斜率公式,考查基本求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的定义得,解得或,再结合偶函数性质得.【详解】解:因为函数是幂函数,所以,解得或,当时,,为奇函数,不满足,舍;当时,,为偶函数,满足条件.所以.故答案为:12、【解析】根据,可得函数图象关于直线对称,当时,,可设,根据,即可求解;【详解】解:,的函数图象关于直线对称,函数关于y轴对称,当时,,那么时,,可得,由,得解得:;故答案为.【点睛】本题考查了函数的性质的应用及不等式的求解,属于中档题.13、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.14、【解析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:15、①.(-∞,1]②.(-1,1]【解析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.16、【解析】由,根据两角差的正切公式可解得【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设圆的方程为,列出方程组,求得的值,即可求得圆的方程;(2)根据题意得到,得出在以为直径的圆上,得到以为直径的圆的方程,再联立两圆的方程组,求得交点坐标,即可得到点的轨迹方程.【小问1详解】解:设圆的方程为,因为圆过三个点,可得,解得,所以圆的方程为,即.【小问2详解】解:因为为线段的中点,且,所以在以为直径的圆上,以为直径的圆的方程为,联立方程组,解得或,所以点的轨迹方程为.18、(1)证明见解析;(2)证明见解析;(3).【解析】(1)欲证线面平行,则需证直线与平面内的一条直线平行.由题可证,则证得平面;(2)欲证线面垂直,则需证直线垂直于平面内的两条相交直线.连接,可证得,从而可证得平面;(3)由(2)可知,为三棱锥的高,平面为三棱锥的底面,应用椎体体积公式即可求解.【详解】(1)证明:分别是的中点,又平面,平面平面(2)如图,连接,,是的中点,同理又,又平面(3)由(2)可知,为三棱锥的高,且,.【点睛】本题考查线面平行,线面垂直的判定定理以及椎体体积公式的应用,考查空间想象能力与思维能力,属中档题.19、(1)周期为,增区间为,减区间为;(2).【解析】(1)利用三角恒等变换思想可得出,利用周期公式可求出函数的周期,分别解不等式和,可得出该函数的增区间和减区间;(2)由可得出,利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式可求出的值.详解】(1),所以,函数的周期为,令,解得;令,解得.因此,函数的增区间为,减区间为;(2),,,,,.【点睛】本题考查正弦型函数周期和单调区间的求解,同时也考查了利用两角差的余弦公式求值,考查运算求解能力,属于中等题.20、(1),;(2)函数在其定义域上为减函数;(3).【解析】(1)由与可建立有关、的方程组,可得解出与的解析式;(2)化简函数解析式,根据函数的解析式可直接判断函数的单调性;(3)将所求不等式变形为,根据函数的定义域、单调性可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】(1)由于函数为奇函数,为偶函数,,,即,所以,,解得,.由,可得,所以,,;(2)函数的定义域为,,所以,函数在其定义域上为减函数;(3)由于函数为定义域上的奇函数,且为减函数,由,可得,由题意可得,解得.因此,实数的取值范围是.【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下:(1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球盐酸毛果芸香碱行业调研及趋势分析报告
- 2025服务器托管合同书模板
- 绿色供应链一体化管理合同
- 2025关于医药采购合同
- 品牌服务协议书合同范本
- 滨海新区应急管理局
- 房屋租赁权转让合同范文
- 建筑材料居间合同
- 药品购销标准合同
- 企业间借款担保合同
- 2025年潞安化工集团招聘笔试参考题库含答案解析
- 幼儿园一日生活安全课件
- 《认罪认罚案件被追诉人反悔应对机制研究》
- 多旋翼无人飞行器嵌入式飞控开发实战-基于STM32系列微控制器的代码实现
- 国家开放大学护理社会实践报告
- 投资项目评估管理制度
- 《工程地质》试题及答案四
- 工程项目归档资料目录范本
- 氦离子化色谱法测试电气设备油中溶解气体的技术规范
- 地 理探究与实践 保护世界文化遗产课件 2024-2025学年地理湘教版七年级上册
- 内燃机车钳工(中级)职业鉴定理论考试题及答案
评论
0/150
提交评论