版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
优胜教育2025届数学高一上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义运算:,将函数的图象向左平移的单位后,所得图象关于轴对称,则的最小值是()A. B.C. D.2.直线的倾斜角是()A.30° B.60°C.120° D.150°3.已知函数的图象,给出以下四个论断①的图象关于直线对称②图象的一个对称中心为③在区间上是减函数④可由向左平移个单位以上四个论断中正确的个数为()A.3 B.2C.1 D.04.下列函数中,既是奇函数又在上有零点的是A. B.C D.5.已知角的终边与单位圆相交于点,则=()A. B.C. D.6.如图,在中,为线段上的一点,且,则A. B.C. D.7.已知,,则下列说法正确的是()A. B.C. D.8.在四面体中,已知棱的长为,其余各棱长都为1,则二面角的平面角的余弦值为()A. B.C. D.9.设集合,,则集合=()A B.C. D.10.已知函数,若函数有两个不同的零点,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.求值:2+=____________12.若函数在区间上单调递增,则实数的取值范围是__________.13.若命题p是命题“”的充分不必要条件,则p可以是___________.(写出满足题意的一个即可)14.定义在上的函数则的值为______15.不等式的解集为,则的取值范围是_________.16.若,则实数____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,),若函数在区间上的最大值为3,最小值为2.(1)求函数的解析式;(2)求在上的单调递增区间;(3)是否存在正整数,满足不等式,若存在,找出所有这样的,的值,若不存在,说明理由.18.已知函数.(1)当时,求方程的解;(2)若,不等式恒成立,求的取值范围.19.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.20.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值21.已知一次函数的图像与轴、轴分别相交于点,(分别是与轴、轴正半轴同方向的单位向量),函数.(Ⅰ)求的值;(Ⅱ)当满足时,求函数的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意可得,再根据平移得到的函数为偶函数,利用对称轴即可解出.【详解】因为,所以,其图象向左平移个单位,得到函数的图象,而图象关于轴对称,所以其为偶函数,于是,即,又,所以的最小值是故选:C.2、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】利用代入检验法可判断①②③的正误,利用图象变换可判断④的正误.【详解】,故的图象关于直线对称,故①正确.,故的图象的对称中心不是,故②错误.,当,,而在为减函数,故在为减函数,故③正确.向左平移个单位后所得图象对应的解析式为,当时,此函数的函数值为,而,故与不是同一函数,故④错误.故选:B.4、D【解析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.5、C【解析】先利用三角函数的定义求角的正、余弦,再利用二倍角公式计算即可.【详解】角的终边与单位圆相交于点,故,所以,故.故选:C.6、D【解析】根据得到,根据题中条件,即可得出结果.【详解】由已知得,所以,又,所以,故选D.【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.7、B【解析】利用对数函数以及指数函数的性质判断即可.【详解】∵,∴,∵,∴,∵,∴,则故选:.8、C【解析】由已知可得AD⊥DC又由其余各棱长都为1得正三角形BCD,取CD得中点E,连BE,则BE⊥CD在平面ADC中,过E作AD的平行线交AC于点F,则∠BEF为二面角A﹣CD﹣B的平面角∵EF=(三角形ACD的中位线),BE=(正三角形BCD的高),BF=(等腰RT三角形ABC,F是斜边中点)∴cos∠BEF=故选C.9、B【解析】先根据一元二次不等式和对数不等式的求解方法求得集合M、N,再由集合的交集运算可得选项【详解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故选:B10、A【解析】将函数零点个数问题转化为图象交点个数问题,再数形结合得解.【详解】函数有两个不同的零点,即方程有两个不同的根,从而函数的图象和函数的图象有两个不同的交点,由可知,当时,函数是周期为1的函数,如图,在同一直角坐标系中作出函数的图象和函数的图象,数形结合可得,当即时,两函数图象有两个不同的交点,故函数有两个不同的零点.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、-3【解析】利用对数、指数的性质和运算法则求解【详解】解:()lg(1)lg1[()3]2+()02+1=﹣3故答案为﹣3【点睛】本题考查对数式、指数式的化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用12、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:13、,(答案不唯一)【解析】由充分条件和必要条件的定义求解即可【详解】因为当时,一定成立,而当时,可能,可能,所以是的充分不必要条件,故答案为:(答案不唯一)14、【解析】∵定义在上的函数∴故答案为点睛::(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围15、[0,1)##0≤k<1【解析】分k=0和k≠0两种情况进行讨论.k≠0时,可看为函数恒成立,结合二次函数的图像性质即可求解.【详解】①当时,不等式可化为1>0,此时不等式的解集为,符合题意;②当时,要使得不等式的解集为,则满足,解得;综上可得,实数的取值范围是.故答案:.16、5##【解析】根据题中条件,由元素与集合之间的关系,得到求解,即可得出结果.【详解】因为,所以,解得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)存在,,或,或,【解析】(1)根据函数在区间上的最大值为3,最小值为2,利用正弦函数的最值求解;(2)利用正弦函数的单调性求解;(3)先化简不等式,再根据,为正整数求解.【小问1详解】解:∵,∴,∴,又∵m>0,最大值为3,最小值为2,∴,解得m=2,n=1.∴.【小问2详解】令,k∈Z,得到,k∈Z,当k=0时,,∴在[0,2]上的单调递增区间是.【小问3详解】由,得,∵a∈N*,b∈N*,∴a=1时,b=1或2;a=2时,b=1;a>2时,b不存在,∴所有满足题意a,b的值为:a=1,b=1或a=1,b=2或a=2,b=1.18、(1)或;(2)【解析】(1)由题意可得,由指数方程的解法即可得到所求解;(2)由题意可得,设,,,可得,即有,由对勾函数的单调性可不等式右边的最大值,进而得到所求范围【详解】(1)方程,即为,即有,所以或,解得或;(2)若,不等式恒成立可得,即,设,,可得,即有,由在递增,可得时取得最大值,即有【点睛】本题考查指数方程的解法和不等式恒成立问题的解法,注意运用换元法和参数分离法,结合对勾函数的单调性,考查运算能力和推理能力,属于中档题19、(1)最大值为16米;(2)最小值为平方米.【解析】(1)设草坪的宽为x米,长为y米,依题意列出不等关系,求解即可;(2)表示,利用均值不等式,即得最小值.【详解】(1)设草坪的宽为x米,长为y米,由面积均为400平方米,得.因为矩形草坪的长比宽至少大9米,所以,所以,解得.又,所以.所以宽的最大值为16米.(2)记整个的绿化面积为S平方米,由题意可得(平方米)当且仅当米时,等号成立.所以整个绿化面积的最小值为平方米.20、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由已知可得,则,又因,所以.所以.(Ⅱ)由(Ⅰ)知,由,得,即,解得.由条件得,故函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术与视觉传达-洞察分析
- 医院调岗申请书范文(5篇)
- 纤维素纤维产业可持续发展-洞察分析
- 办公楼消防改造方案(10篇)
- 益生菌与结肠炎肠道菌群互作研究-洞察分析
- 《工程评定宣贯会讲》课件
- 创新小区消防安全管理机制研究
- 农业银行合规文化的商业应用与前景分析
- 办公环境优化与提升工作效率的策略
- 2025蔬菜种植合同版样式
- 学前儿童卫生与保健-期末大作业:案例分析-国开-参考资料
- 2023-2024学年河北省廊坊十八中八年级(上)期末数学试卷
- GB/T 26470-2011架桥机通用技术条件
- 横版介绍信(带存根打印版)
- 胃脘痛中医护理方案-课件
- 《大学生职业发展与就业指导》第二章自我认知
- 最新营销中心物业服务可视化操作指引说明详解新实用手册
- 食材配送投标服务方案
- 排污许可证守法承诺书(2篇)
- 矩形顶管施工方案28
- 液压转向器厂总平面布置课程设计
评论
0/150
提交评论