版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌八中、南昌二十三中等四校2025届数学高一上期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则、、的大小关系为()A. B.C. D.2.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45°C.60° D.90°3.已知,,则的大小关系是A. B.C. D.4.函数的零点所在的区间是A. B.C. D.5.已知定义在R上的函数满足:对任意,则A. B.0C.1 D.36.为了得到函数的图象,只需把函数的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度7.函数的图像为()A. B.C. D.8.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.9.幂函数的图象关于轴对称,且在上是增函数,则的值为()A. B.C. D.和10.已知,其中a,b为常数,若,则()A. B.C.10 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.的定义域为_________;若,则_____12.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.13.计算:=_______________.14.计算:=___________15.命题“”的否定是________16.若幂函数的图象过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线(1)求证:直线过定点(2)求过(1)的定点且垂直于直线直线方程.18.已知函数(1)写出函数单调递减区间和其图象的对称轴方程;(2)用五点法作图,填表并作出在图象.xy19.设1若对任意恒成立,求实数m的取值范围;2讨论关于x的不等式的解集20.已知函数与.(1)判断的奇偶性;(2)若函数有且只有一个零点,求实数a的取值范围.21.某公司为了解宿州市用户对其产品的满意度,从宿州市,两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图(如图)和地区的用户满意度评分的频数分布表(如表1)满意度评分频数2814106表1满意度评分低于70分满意度等级不满意满意非常满意表2(1)求图中的值,并分别求出,两地区样本用户满意度评分低于70分的频率(2)根据用户满意度评分,将用户的满意度分为三个等级(如表2),将频率看作概率,从,两地用户中各随机抽查1名用户进行调查,求至少有一名用户评分满意度等级为“满意”或“非常满意”的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.2、C【解析】分别取AC.PC中点O.E.连OE,DE;则OE//PA,所以(或其补角)就是PA与BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.设正方形ABCD边长为2,则PA=PC=BD=所以OD=OE=DE=,是正三角形,,故选C3、D【解析】因为,故,同理,但,故,又,故即,综上,选D点睛:对于对数,如果或,那么;如果或,那么4、B【解析】∵,,,,∴函数的零点所在区间是故选B点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得
这个也就是方程的根.由此可判断根所在区间.5、B【解析】,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.6、A【解析】根据三角函数图象的变换求解即可【详解】由题意,把函数的图象向左平行移动个单位长度得到故选:A7、B【解析】首先判断函数的奇偶性,再根据函数值的特征,利用排除法判断可得;【详解】解:因为,定义域为,且,故函数为偶函数,函数图象关于轴对称,故排除A、D,当时,,所以,故排除C,故选:B8、A【解析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.9、D【解析】分别代入的值,由幂函数性质判断函数增减性即可.【详解】因为,,所以当时,,由幂函数性质得,在上是减函数;所以当时,,由幂函数性质得,在上是常函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;故选:D10、A【解析】计算出,结合可求得的值.【详解】因为,所以,若,则.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、①.;②.3.【解析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【详解】空一:由函数解析式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;12、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.13、【解析】考点:两角和正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.14、1【解析】.故答案为115、【解析】由否定的定义写出即可.【详解】命题“”的否定是“”故答案为:16、27【解析】代入已知点坐标求出幂函数解析式即可求,【详解】设代入,即,所以,所以.故答案为:27.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】⑴将直线化为,解不等式组即可得证;⑵由(1)知定点为,结合题目条件计算得直线方程解析:(1)根据题意将直线化为的解得,所以直线过定点(2)由(1)知定点为,设直线的斜率为k,且直线与垂直,所以,所以直线的方程为18、(1)递减区间,对称轴方程:;(2)见解析【解析】(1)由正弦型函数的单调性与对称性即可求得的单调区间与对称轴;(2)根据五点作图法规则补充表格,然后在所给坐标中描出所取五点,以光滑曲线连接即可.【详解】(1)令,解得,令,解得,所以函数的递减区间为,对称轴方程:;(2)0xy131-11【点睛】本题考查正弦型函数的单调性与对称性,五点法作正(余)弦型函数的图像,属于基础题.19、(1);(2)见解析.【解析】1由题意可得对恒成立,即有的最小值,运用基本不等式可得最小值,即可得到所求范围;2讨论判别式小于等于0,以及判别式大于0,由二次函数的图象可得不等式的解集【详解】1由题意,若对任意恒成立,即为对恒成立,即有的最小值,由,可得时,取得最小值2,可得;2当,即时,的解集为R;当,即或时,方程的两根为,,可得的解集为【点睛】本题主要考查了不等式的恒成立问题,以及一元二次不等式的解法,注意运用转化思想和分类讨论思想方法,考查运算能力,属于中档题20、(1)偶函数(2)【解析】(1)根据奇偶性定义判断;(2)函数只有一个零点,转化为方程只有一个根,用换元法转化为二次方程只有一个正根(或两个相等正根),再根据二次方程根分布分类讨论可得小问1详解】∵的定义域为R,∴,∴为偶函数.【小问2详解】函数只有一个零点即即方程有且只有一个实根.令,则方程有且只有一个正根.①当时,,不合题意;②当时,若方程有两相等正根,则,且,解得;满足题意③若方程有一个正根和一个负根,则,即时,满足题意.∴实数a的取值范围为.21、(1);地区样本用户满意度评分低于70分的频率为;地区样本用户满意度评分低于70分的频率为(2)【解析】(1)由频率和等于1计算可求得,进而计算低于70分的频率即可得出结果.(2)由(1)可知,记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取一名用户评分低于的事件记为,则,由对立事件的概率公式计算即可得出结果.【小问1详解】根据地区的频率直方图可得,解得所以地区样本用户满意度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年山东客运考试应用能力试题题库及答案解析
- 2024年北京客运资格证考试模拟
- 山东省济宁市鱼台县一中2025届数学高三上期末监测试题含解析
- 湖北省黄冈市巴驿中学2025届生物高三第一学期期末达标检测试题含解析
- 2025届河北省保定市唐县第一中学生物高三第一学期期末联考试题含解析
- 甘肃省天水第一中学2025届高一生物第一学期期末质量检测试题含解析
- 2025届吴忠高级中学高一生物第一学期期末预测试题含解析
- 商业项目建造标准
- 福建省罗源第二中学、连江二中2025届生物高三第一学期期末达标测试试题含解析
- 2025届江西省抚州市临川区第一中学高三生物第一学期期末统考试题含解析
- 高中信息技术必修1人工智能的作用及影响
- 竹笛教案(演奏姿势)
- 危险性较大的分部分项工程施工前安全生产条件核查表
- 高中生研究性学习报告范文
- 化疗药物使用顺序课件
- GB/T 7423.2-1987半导体器件散热器型材散热器
- GB/T 6582-2021玻璃玻璃颗粒在98℃时的耐水性试验方法和分级
- 基础增分技巧提分(备考应考主题班会) 名师班主任成长系列班会
- 艾宾浩斯遗忘曲线-课件
- 碳捕集、利用与封存技术课件
- 《色彩的对比》课件
评论
0/150
提交评论