版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滕州实验中学2025届高一数学第一学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,,则,,的大小关系是()A. B.C. D.2.如图所示的时钟显示的时刻为3:30,此时时针与分针的夹角为.若一个扇形的圆心角为a,弧长为10,则该扇形的面积为()A. B.C. D.3.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.244.已知a,b为实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.若命题:,则命题的否定为()A. B.C. D.6.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.7.设函数在区间上为偶函数,则的值为()A.-1 B.1C.2 D.38.已知函数的值域为R,则实数的取值范围是()A. B.C. D.9.函数f(x)=2x-5零点在下列哪个区间内().A.(0,1) B.(1,2)C.(2,3) D.(3,4)10.已知命题p:,,则()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11._____12.已知幂函数(为常数)的图像经过点,则__________13.已知,则____________.(可用对数符号作答)14.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.15.已知函数,则使不等式成立的的取值范围是_______________16.已知是定义在上的偶函数,并满足:,当,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设n是不小于3的正整数,集合,对于集合Sn中任意两个元素.定义.若,则称A,B互为相反元素,记作或(1)若n=3,A=(0,1,0),B=(1,1,0),试写出,,以及A·B的值;(2)若,证明:;(3)设k是小于n的正奇数,至少含有两个元素的集合,且对于集合M中任意两个不同的元素,都有,试求集合M中元素个数的所有可能的取值18.已知(1)若,求的值;(2)若,且,求的值19.已知函数.(1)若的图象恒在直线上方,求实数的取值范围;(2)若不等式在区间上恒成立,求实数的取值范围.20.设函数是定义域为的任意函数.(1)求证:函数是奇函数,是偶函数;(2)如果,试求(1)中的和的表达式.21.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据指数函数、对数函数的单调性,结合题意,即可得x,y,z的大小关系,即可得答案.【详解】因为在上为单调递增函数,且,所以,即,因为在R上为单调递增函数,且,所以,即,又,所以.故选:A2、D【解析】先求出,再由弧长公式求出扇形半径,代入扇形面积公式计算即可.【详解】由图可知,,则该扇形的半径,故面积.故选:D3、C【解析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图4、B【解析】由充分条件、必要条件的定义及对数函数的单调性即可求解.【详解】解:因为,所以在上单调递减,当时,和不一定有意义,所以“”推不出“”;反之,,则,即,所以“”可推出“”.所以“”是“”的必要不充分条件.故选:B.5、D【解析】根据存在量词的否定是全称量词可得结果.【详解】根据存在量词的否定是全称量词可得命题的否定为.故选:D6、B【解析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决7、B【解析】由区间的对称性得到,解出b;利用偶函数,得到,解出a,即可求出.【详解】因为函数在区间上为偶函数,所以,解得又为偶函数,所以,即,解得:a=-1.所以.故选:B8、C【解析】分段函数值域为R,在x=1左侧值域和右侧值域并集为R.【详解】当,∴当时,,∵的值域为R,∴当时,值域需包含,∴,解得,故选:C.9、C【解析】利用零点存在定理进行求解.【详解】因为单调递增,且;因为,所以区间内必有一个零点;故选:C.【点睛】本题主要考查零点所在区间的判断,判断的依据是零点存在定理,侧重考查数学运算的核心素养.10、A【解析】直接利用全称命题的否定即可得到结论【详解】因为命题p:,,所以:,.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用根式性质与对数运算进行化简.【详解】,故答案为:612、3【解析】设,依题意有,故.13、【解析】根据对数运算法则得到,再根据对数运算法则及三角函数弦化切进行计算.【详解】∵,∴,又,.故答案为:14、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.15、【解析】由奇偶性定义可判断出为偶函数,结合复合函数单调性的判断可得到在上单调递增,由偶函数性质知其在上单调递减,利用函数单调性解不等式即可求得结果.【详解】由,解得:或,故函数的定义域为,又,为上的偶函数;当时,单调递增,设,,在上单调递增,在上单调递增,在上单调递增,又为偶函数,在上单调递减;由可知,解得.故答案为:.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.16、5【解析】根据可得周期,再结合偶函数,可将中的转化到内,可得的值.【详解】因为,所以,所以,即函数的一个周期为4,所以,又因为是定义在上的偶函数,所以,因当,,所以,所以.故答案为:2.5.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析(3)集合M中元素的个数只可能是2【解析】(1)根据定义直接求解即可;(2)设,进而结合题意得,,再计算即可;(3)假设为集合M中的三个不相同的元素,进而结合题意,推出矛盾,得出假设不成立,即集合M中至多有两个元素,且时符合题意,故集合M中元素的个数只可能是2【小问1详解】解:因为若,则称A,B互为相反元素,记作或,所以,所以.【小问2详解】解:设,由,可得所以,当且仅当,即时上式“=”成立由题意可知即所以【小问3详解】解:解法1:假设为集合M中的三个不相同的元素则即又由题意可知或1,i=1,2,,n恰有k个1,与n-k个0设其中k个等于1项依次为n-k个等于0的项依次为由题意可知所以,同理所以即因为由(2)可知因为所以,设,由题意可知.所以,得与为奇数矛盾所以假设不成立,即集合M中至多有两个元素当时符合题意所以集合M中元素的个数只可能是2解法2:假设为集合M中的三个不相同的元素则即又由题意可知恰有k个1,与n-k个0设其中k个等于1的项依次为n-k个等于0的项依次由题意可知所以①同理②因为所以,①—②得又因为为奇数与矛盾所以假设不成立,即集合M中至多有两个元素当时符合题意所以集合M中元素的个数只可能是2【点睛】关键点点睛:本题第三问解题的关键在于利用反证法证明当为集合M中的三个不相同的元素时,结合题意推出与为奇数矛盾,进而得集合M中至多有两个元素,再举例当时符合题意即可.18、(1)(2)【解析】(1)利用诱导公式化简可得,然后利用二倍角公式求解即可;(2)由条件可得,,然后根据求解即可.【小问1详解】因为,所以【小问2详解】因为,所以,所以19、(1);(2).【解析】(1)根据给定条件可得恒成立,再借助判别式列出不等式求解即得.(2)根据给定条件列出不等式,再分离参数,借助函数的单调性求出函数值范围即可推理作答.【小问1详解】因函数的图象恒在直线上方,即,,于是得,解得,所以实数的取值范围是:.【小问2详解】依题意,,,令,,令函数,,,,而,即,,则有,即,于是得在上单调递增,因此,,,即,从而有,则,所以实数的取值范围是.20、(1)是奇函数,是偶函数.(2)【解析】(1)计算,可得证(2)将f(x)代入(1)中表达式化简即可求得试题解析:(1)∵的定义域为,∴和的定义域都为.∵,∴.∴是奇函数,∵,∴,∴是偶函数.(2)∵,由(1)得,.∵,∴.点睛:抽象函数的奇偶性证明,先看定义域是否关于远点对称,然后根据奇偶函数的等式性质进行计算便可判断出奇偶性,计算时要注意符号的变化.21、(Ⅰ)10(Ⅱ)详见解析【解析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0.25(x-100)2+2300,0≤x≤120,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度铝板销售与采购协议
- 二零二四年度货物进出口贸易合同标的
- 2024版特许经营合同(城市轨道交通)2篇
- 二零二四年教育培训机构合作运营合同2篇
- 二零二四年工业园区环境清洁维护合同
- 二零二四年度影视作品制作与版权购买合同
- 二零二四年度市场营销策划及执行合同
- 二零二四年度租赁期满房产购买合同
- 二零二四年度科研试验与技术开发合同
- 二零二四年采购合同协议
- 文明旅游专题知识讲座
- 手术室门急诊术后并发症统计表
- 2024年企业文化企业建设知识竞赛-中国石化企业文化历年考试高频考点试题附带答案
- 中国邮政面试的问题及其参考答案
- 软件项目实施的主要挑战、困难及其应对方法
- 攀岩公园可行性报告
- 眼科手术围手术期的护理
- 别睡 这里有蛇 一个语言学家和人类学家在亚马孙丛林深处
- 计算机桌面运维技术服务方案
- 厨师营养培训课件
- 护理保护性约束课件
评论
0/150
提交评论