河南省信阳市息县一中2025届高二上数学期末联考模拟试题含解析_第1页
河南省信阳市息县一中2025届高二上数学期末联考模拟试题含解析_第2页
河南省信阳市息县一中2025届高二上数学期末联考模拟试题含解析_第3页
河南省信阳市息县一中2025届高二上数学期末联考模拟试题含解析_第4页
河南省信阳市息县一中2025届高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省信阳市息县一中2025届高二上数学期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆与圆的交点为A,B,则线段AB的垂直平分线的方程是A. B.C. D.2.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.3.某大学数学系共有本科生1500人,其中一、二、三、四年级的人数比为,要用分层随机抽样的方法从中抽取一个容量为300的样本,则应抽取的三年级学生的人数为()A.20 B.40C.60 D.804.双曲线的渐近线方程为A. B.C. D.5.抛物线y2=4x的焦点坐标是A.(0,2) B.(0,1)C.(2,0) D.(1,0)6.已知数列中,且满足,则()A.2 B.﹣1C. D.7.在平面直角坐标系中,双曲线C:的左焦点为F,过F且与x轴垂直的直线与C交于A,B两点,若是正三角形,则C的离心率为()A. B.C. D.8.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.9.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.3610.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.11.设,,,则下列不等式中一定成立的是()A. B.C. D.12.已知椭圆的两焦点分别为,,P为椭圆上一点,且,则的面积等于()A.6 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数极值点的个数是______14.一条直线经过,并且倾斜角是直线的倾斜角的2倍,则直线的方程为__________15.已知两平行直线与间的距离为3,则C的值是________.16.下列命题:①若,则;②“在中,若,则”逆命题是真命题;③命题“,”的否定是“,”;④“若,则”的否命题为“若,则”.则其中正确的是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角标系中,已知n个圆与x轴和线均相切,且任意相邻的两个圆外切,其中圆.(1)求数列通项公式;(2)记n个圆的面积之和为S,求证:.18.(12分)设:,:.(1)若命题“,是真命题”,求的取值范围;(2)若是的充分不必要条件,求的取值范围.19.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与x轴交于点P.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于A,B两点,求的值20.(12分)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.21.(12分)已知数列满足,(1)证明是等比数列,(2)求数列的前项和22.(10分)如图所示,在空间四边形中,,分别为,的中点,,分别在,上,且.求证:(1)、、、四点共面;(2)与的交点在直线上

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】圆的圆心为,圆的圆心为,两圆的相交弦的垂直平分线即为直线,其方程为,即;故选A.【点睛】本题考查圆的一般方程、两圆的相交弦问题;处理直线和圆、圆和圆的位置关系时,往往结合平面几何知识(如本题中,求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程)可减小运算量.2、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A3、C【解析】根据给定条件利用分层抽样的抽样比直接计算作答.【详解】依题意,三年级学生的总人数为,从1500人中用分层随机抽样抽取容量为300的样本的抽样比为,所以应抽取的三年级学生的人数为.故选:C4、A【解析】根据双曲线的渐近线方程知,,故选A.5、D【解析】的焦点坐标为,故选D.【考点】抛物线的性质【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握6、C【解析】首先根据数列的递推公式求出数列的前几项,即可得到数列的周期性,即可得解;【详解】解:因为且,所以,,,所以是周期为的周期数列,所以,故选:C7、A【解析】设双曲线半焦距为c,求出,由给定的正三角形建立等量关系,结合计算作答.【详解】设双曲线半焦距为c,则,而轴,由得,从而有,而是正三角形,即有,则,整理得,因此有,而,解得,所以C的离心率为.故选:A8、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.9、B【解析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A11、B【解析】利用特殊值法可判断ACD的正误,根据不等式的性质,可判断B的正误.【详解】对于A中,令,,,,满足,,但,故A错误;对于B中,因为,所以由不等式的可加性,可得,所以,故B正确;对于C中,令,,,,满足,,但,故C错误;对于D中,令,,,,满足,,但,故D错误故选:B12、B【解析】根据椭圆定义和余弦定理解得,结合三解形面积公式即可求解【详解】由与是椭圆上一点,∴,两边平方可得,即,由于,,∴根据余弦定理可得,综上可解得,∴的面积等于,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】通过导数判断函数的单调性即可得极值点的情况.【详解】因为,,所以在上恒成立,所以在上单调递增,所以函数的极值点的个数是0,故答案为:0.14、【解析】先求出直线倾斜角,从而可求得直线的倾斜角,则可求出直线的斜率,进而可求出直线的方程【详解】因为直线的斜率为,所以直线的倾斜角为,所以直线的倾斜角为,所以直线的斜率为,因为直线经过,所以直线的方程为,即,故答案为:15、【解析】根据两条平行直线之间的距离公式即可得解.【详解】两平行直线与间的距离为3,所以,所以故答案为:16、②③④【解析】根据不等式的性质,正弦定理与四种命题的概念,命题的否定,判断各命题【详解】①,满足,但,①错;②在中,由正弦定理,因此其逆命题也是真命题,②正确;③存在命题的否定是全称命题,命题“,”的否定是“,”,③正确;④由否命题的概念,“若,则”的否命题为“若,则”,④正确故答案为:②③④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)证明见解析.【解析】(1)由已知得,设圆分别切轴于点,过点作,垂足为.在从而有得,由等比数列的定义得数列是以为首项,为公比的等比数列.由此求得答案;(2)由(1)得再由圆的面积公式和等比数列求和公式计算可得证.【小问1详解】解:直线的倾斜角为则圆心在直线上,,设圆分别切轴于点,过点作,垂足为.在中,所以即化简得,变形得,所以是以为首项,为公比的等比数列.,.【小问2详解】解:由(1)得所以,所以.18、(1)(2)【解析】(1)解不等式得到解集,根据题意列出不等式组,求出的取值范围;(2)先解不等式,再根据充分不必要条件得到是的真子集,进而求出的取值范围.【小问1详解】因为,由可得:,因为“,”为真命题,所以,即,解得:.即的取值范围是.【小问2详解】因为,由可得:,,因为是的充分不必要条件,所以是的真子集,所以(等号不同时取),解得:,即的取值范围是.19、(1)直线l的普通方程,曲线C的直角坐标方程(2)【解析】(1)直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;(2)利用一元二次方程根和系数关系式的应用求出结果【小问1详解】解:直线的参数方程为为参数),转换为直角坐标方程,曲线的极坐标方程为,根据,转换为直角坐标方程为;小问2详解】直线转换为参数方程为为参数),代入,得到,所以,,所以20、(1)(,).(2)【解析】(1)根据条件列关于P点坐标得方程组,解得结果,(2)先根据点到直线距离公式结合条件解得点M坐标,再建立的函数解析式,最后根据二次函数性质求最小值.【详解】解:(1)由已知可得点A(-6,0),F(4,0)设点P(,),则={+6,},={-4,},由已知可得则2+9-18=0,解得=或=-6.由于>0,只能=,于是=.∴点P的坐标是(,).(2)直线AP的方程是-+6=0.设点M(,0),则M到直线AP的距离是.于是=,又-6≤≤6,解得=2.椭圆上的点(,)到点M的距离为,则,由于-6≤≤6,∴当=时,取得最小值.【点睛】本题考查直线与椭圆位置关系,考查基本分析求解能力,属中档题.21、(1)见解析;(2)【解析】(1)利用定义法证明是一个与n无关的非零常数,从而得出结论;(2)由(1)求出,利用分组求和法求【详解】(1)由得,所以,所以是首项为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论